

Tian An Enfield Pty Ltd Environmental Site Investigation

Mitchell Street, Enfield, NSW

28 June 2017 52680/109132 JBS&G

Tian An Enfield Pty Ltd Environmental Site Investigation

Mitchell Street, Enfield, NSW

28 June 2017 52680/109132 JBS&G

Table of Contents

Exe	cutive S	Summary	/	1
1.	Intro	duction.		2
	1.1	Backgr	ound	2
	1.2	Objecti	ives	2
	1.3	Scope	of Work	2
2.	Site	Site Condition and Surrounding Environment		
	2.1	Site Ide	entification	3
	2.2	Site De	escription	3
	2.3	Surrou	nding Land-use	3
	2.4	Geology		
	2.5	Topography		
	2.6	Hydrol	ogy	4
	2.7	Hydrog	geology	4
	2.8	Acid Su	ılfate Soils	4
3.	Site	History		5
	3.1	Aerial Photographs		
	3.2	Title Details		
	3.3	EPA Records		
	3.4	Australian and NSW Heritage Register		
	3.5	WorkCover Dangerous Goods Database		
4.	Cond	ceptual Si	ite Model	7
	4.1	Areas of Environmental Concern		
	4.2	Potentially Contaminated Media		
	4.3	Potential for Migration, Exposure Pathways and Receptors		
	4.4	Potent	ial Exposure Pathways	8
		4.4.1	Receptors	8
	4.5	Prefere	ential Pathways	8
5.	Sam	pling and	d Analysis Plan	9
	5.1	Data Q	uality Objectives	9
		5.1.1	State the Problem	9
		5.1.2	Identify the Decision	9
		5.1.3	Identify Inputs to the Decision	9
		5.1.4	Define the Study Boundaries	9
		5.1.5	Develop a Decision Rule	10
		5.1.6	Specific Limits on Decision Errors	
		5.1.7	Optimise the Design of Obtaining Data	12

	5.2	Soil Sar	mpling Methodology	12	
		5.2.1	Field PID Screening	13	
	5.3	Ground	dwater Installation and Sampling Methodology	13	
	5.4	Duplica	ate and Triplicate Sample Preparation	13	
	5.5	Labora	tory Analyses	13	
6.	Asse	ssment C	Criteria	15	
	6.1	Regula	tory Guidelines	15	
	6.2	Assessr	ment Criteria	15	
		6.2.1	Soil Investigation Criteria	15	
		6.2.2	Groundwater Investigation Criteria	16	
7.	Qual	ity Assur	rance/Quality Control	17	
	7.1	QA/QC	Results	17	
	7.2	QA/QC	Discussion	18	
		7.2.1	Precision	18	
		7.2.2	Accuracy	19	
		7.2.3	Representativeness	19	
		7.2.4	Comparability	19	
		7.2.5	Completeness	19	
		7.2.6	Sensitivity	20	
	7.3	QA/QC	Conclusions	20	
8.	Discı	ussion of	Soil Results	21	
	8.1	Soil Ob	servations	21	
	8.2				
		8.2.1	Metals	21	
		8.2.2	TRH/BTEX	21	
		8.2.3	PAHs	21	
		8.2.4	OCPs/PCBs	21	
		8.2.5	Phenols	21	
		8.2.6	Asbestos	21	
9.	Disc	ussion of	Groundwater Results	22	
	9.1	Ground	dwater Observations	22	
	9.2	Ground	dwater Analytical Results	22	
		9.2.1	Metals	22	
		9.2.2	TRH/BTEX	22	
		9.2.3	PAHs	23	
		9.2.4	Phenols	23	
10.	Site	Characte	risation	24	
9.	9.1	Ground Ground 9.2.1 9.2.2 9.2.3	Groundwater Resultsdwater Observationsdwater Analytical Results		
10.	Site	Characte	risation	24	

	10.1	Potential Risks to Future Onsite Receptors	24
	10.2	Background Soil Concentrations	24
	10.3	Chemical Mixtures	24
	10.4	Aesthetic Issues including Odours	24
	10.5	Potential Migration of Contaminants	24
	10.6	Site Management Strategy	24
11.	Concl	usions and Recommendations	25
12.	Limita	ations	26

Figures

Figure 1: Site Location

Figure 2: Site Layout and Sample Locations

Tables

Table A: Soil Analytical Data

Table B: Groundwater Analytical Data

Table C: Groundwater Parameters

Appendices

Appendix A: Office of Water Bore Search

Appendix B: EPA Records

Appendix C: Logs

Appendix D: Laboratory Certificates and COC Documentation

Appendix E: QA/QC ESDAT Output

List of Abbreviations

A list of the common abbreviations used throughout this report is provided below.

ACM Asbestos containing material

AEC Potential Area of Environmental Concern

AHD Australian Height Datum

As Arsenic

ASLP Australian Standard Leaching Procedure

Bgs below ground surface

B(a)P Benzo(a)pyrene

BTEX Benzene, toluene, ethylbenzene and xylenes

Cd Cadmium

COPC Contaminant Of Potential Concern

Cr Chromium

Cu Copper

DQOs Data Quality Objectives

EIL/ESL Ecological investigation level/Ecological screening level

EPA NSW Environment Protection Authority

ESA Environmental site assessment

GIL Groundwater Investigation Level

Ha Hectare

Hg Mercury

HIL/HSL Health-based investigation level/Health-based screening level

JBS&G Australia Pty Ltd

LOR Limit of Reporting

Ni Nickel

OCP Organochlorine Pesticides

OPP Organophosphate Pesticides

PAHs Polycyclic aromatic hydrocarbons

Pb Lead

RPD Relative Percent Difference

TRH Total Recoverable Hydrocarbons

Zn Zinc

Executive Summary

JBS&G Australia Pty Ltd (JBS&G) was engaged by Tian An Enfield Pty Ltd (Tian, the client) to conduct a soil and groundwater environmental assessment. The site is located at 4 Mitchell Road, Enfield, NSW, and is legally identified as Lot 3 DP585664. The site location and site layout are presented on **Figure 2** respectively.

It is understood that the site is proposed to undergo development for a medium density residential land use.

The objective of the investigation is to assess the potential for contamination based on current and historical site activities, to draw preliminary conclusions of the potential contamination status of the site and to assess potential soil and groundwater issues which may affect the site's use for residential purposes.

The scope of work comprised a review of the Phase 1 Environmental Site Assessment (JBS Environmental, 2011) and a soil and groundwater investigation programme outside of the existing building footprint.

Based on the scope of work and subject to the limitations in **Section 12**, the following summarises the findings and conclusions of the assessment:

- The site remained vacant until the construction of the present day building circa 1986. The
 surrounding land use was predominantly residential in nature except for the former quarry
 situated immediately west of the site. The quarry is visible in a 1930 aerial image and was
 filled in the 1980's and converted to a park (Henley Park);
- During investigations, fill material was encountered at all sampling locations ranging from 0.4 to 1.2 m bgs. Fill material generally comprised road base, gravelly sand underlain by clayey silt or gravelly clay with trace levels of sand inclusions in road way areas. In grassed / vegetated or garden bed areas the fill was generally found to consist sandy silt and underlain by gravelly silty clay or gravelly sandy clay with organic matter inclusions;
- A number of soil samples representative of fill material were recovered and analysed for a range of identified contaminants of potential concern (COPC) including heavy metals, TRH/BTEX, PAH, OCPs, PCBs and asbestos;
- Four existing groundwater wells were sampled for a range of contaminants of potential concern (COPC) including heavy metals, TRH/BTEX, PAH and phenols; and
- Laboratory analytical results indicate all other COPCs were below the laboratory limit of reporting (LOR) or the adopted human health based site assessment criteria, except for:
 - In one, near surface sample the concentration of lead exceeded the adopted health and ecological site soil assessment criteria (BH10). The location is in a landscaped mound and is likely imported fill. The lateral and vertical extent of the lead exceedance has not been identified and remains a data-gap; and
 - Groundwater investigations identified copper, nickel and zinc above site criteria for fresh water ecosystems, however, it is considered the concentrations are representative of regional groundwater and not related to contamination of the site. There is no known beneficial use of groundwater on the site or in the surrounding area.

Based on the findings of the investigation, it is recommended that prior to site redevelopment the fill materials present on site be fully characterised to support appropriate management during construction. During further site investigations, the low potential for landfill gas migrating onto the site should be assessed by appropriate sampling.

1. Introduction

1.1 Background

JBS&G Australia Pty Ltd (JBS&G) was engaged by Tian An Enfield Pty Ltd (Tian, the client) to conduct a soil and groundwater environmental investigations. The site is located at 4 Mitchell Road, Enfield, NSW, and is legally identified as Lot 3 DP585664.

It is understood that an assessment is required to ascertain the suitability of the site for residential development.

In 2011 JBS Environmental undertook a Phase 1 Environmental Sie Assessment of the site (JBS 41670-17108, June 2011). It was recommended that a Phase 2 soil, groundwater and landfill gas investigation be undertaken and the investigations are reported herein.

This investigation has been developed in accordance with guidelines made or approved by the NSW Environment Protection Authority (EPA) and relevant Australian Standards.

1.2 Objectives

The objective of the investigation is to assess the potential for contamination based on current and historical site activities, to draw preliminary conclusions of the potential contamination status of the site and to assess potential soil and groundwater issues which may affect the site's use for residential purposes.

1.3 Scope of Work

The following scope of works was undertaken:

- A review of readily available site history and background information to identify potential areas of environmental concern (AECs) and associated contaminants of potential concern (COPC);
- A preliminary soil and groundwater investigation program;
- Comparison of collected data against relevant EPA endorsed criteria in relation to assessment, from a site contamination perspective, of land use suitability; and
- Complete a preliminary assessment of whether the investigation areas are suitable, from a contamination perspective, for residential purposes.

2. Site Condition and Surrounding Environment

2.1 Site Identification

The location of the site is shown in **Figure 1**. The details are summarised in **Table 2.1** and described in detail in the following sections.

Table 2.1: Summary Site Details

Address	4 Mitchell St, Enfield, NSW
Lot and DP	Lot 3 in DP585664
Area (m²)	Approximately 1.2 ha
Local Government Authority	Municipality of Burwood
Current/Proposed Land Use	Commercial -> Residential
Zoning	Special Use

2.2 Site Description

The site layout is shown on **Figure 2** and comprises a large multi-use building, access driveways and car parking areas, some small garden beds and grassed areas. The main building houses the Vision Australia offices, a cafeteria, a library, a warehouse and an underground carpark.

At the entry/exit point of the underground carpark was a small concrete slab understood to be the former locations of a diesel above ground storage tank (AST).

2.3 Surrounding Land-use

The surrounding land uses have been identified as follows:

- North Residential properties with Llangollan Avenue further north;
- East Residential properties bound the site, with Burwood Road further east;
- South Mitchell street with residential properties further south; and
- West Henley Park.

2.4 Geology

Review of the regional geological map (DMR 1983¹) indicated the site is underlain by Middle Triassic Wianamatta group shale comprising carbonaceous claystone, laminite, fine to medium-grained lithic sandstone and rare coal.

The local relief of 30 m with slopes usually of <5% and broad rounded crests and ridges. The area generally consists of cleared eucalypt woodland and tall open forest (wet schlerophyll forest).

Soils in the area generally comprise shallow and moderately deep, (<100 cm), red and brown podzolic soils on crests, upper slopes and well drained areas; with deep (150- 300cm) yellow podzolic soils and soloths on lower slopes and in areas of poor drainage.

Limitations include moderately reactive and highly plastic subsoil with low soil fertility and poor soil drainage.

2.5 Topography

A review of the Natural Resources Atlas² topographic map showed that the site has an approximate height of 20 m Australian Height Datum (AHD). The site has a gentle fall to the west towards Henley Park. During the site inspection, there was evidence of minor fill material, mostly in garden beds, having been used at the site, with the site levels being similar to that of surrounding properties. Some minor cut and fill was also evident in the front visitor carpark area.

Sydney Geological Series Sheet S1 56-5. Department of Mineral Resources, 1983 (DMR 1983).

New South Wales Natural Resource Atlas, NSW Government

2.6 Hydrology

Given the currently mostly sealed nature of the site, precipitation is expected to flow along the gutters and drains into the stormwater drains along Mitchell St to the south and Baker St to the north. In the grassed areas and small garden beds, rainwater is expected to infiltrate the relatively permeable surface soils.

The Cooks River is approximately 900 m south of the site located in the Whiddon Reserve. The Cooks River flows south east eventually joining Botany Bay.

2.7 Hydrogeology

Registered groundwater bore information was obtained from the NSW Office of Water (OW, 2016³) database (**Appendix A**). There are no registered bores located within a 500 m radius of the site.

Based on local topography, groundwater flow is anticipated to be to the south towards the Cooks River. Groundwater beneath the site is likely to be > 3.5 m below ground surface and within alluvial soils or confined to zones of relatively higher permeability (i.e. fractures in the weathered shale)

2.8 Acid Sulfate Soils

A review of the Australian Soil Resource Information System (ASRIS 2014) indicates that the site is located within an area of low probability of acid sulfate soils.

NSW Govt. Office of Water, http://allwaterdata.water.nsw.gov.au/water.stm , accessed 12th September 2016 (OW 2016)

3. Site History

3.1 Aerial Photographs

A review of aerial photograph (JBS 41670-17108, June 2011) indicated that:

- In 1930 the site was vacant land, with the general area mostly residential houses. A large excavation, assumed to be a quarry/brick pit, was located to the west of the site in the area that is now Henley Park.
- By 1982 the quarry/pit to the west of the site appeared to have been partially filled. The surrounding residential areas appeared similar to the previous photograph.
- In 1986 the current Vision Australia building had been partially constructed. The quarry/pit had been completely backfilled to form Henley Park. The surrounding residential areas appeared similar to the previous photograph.
- In 2004 the site and surrounding areas appeared similar to the previous photograph with some additional construction observed on the Vision Australia building.

In relation to Henley Park, part of the park was a brick works, which closed in 1958. The site remained unused until 1966 when it was filled and subsequently landscaped (BDHS, 2010)⁴.

3.2 Title Details

A historic title search was conducted for the site (JBS 41670-17108, June 2011) and indicates title holders as tabulated below.

Year	Title Holder
1917	Rupert Cook's Brickworks Limited
1963	Rupert Cook's Brickworks Pty. Limited
1963	Parks Developments Pty. Limited
1966	The Council of the Municipality of Burwood
1971	Leased by Substation Premises no 3134 to the Sydney County Council
1982	Royal Blind Society of New South Wales
1984	Leased by Substation Premises no 3622 to the Sydney County Council
2003	Part leased, level 1, library building to the Fred Hollows Foundation
2006	RBS RVIB. VAF Limited
2007	Vision Australia
2009	Vision Australia Limited

3.3 EPA Records

A search of the NSW EPA's public register maintained under the Protection of the Environment Operations Act 1997 (POEO Act) was undertaken for the subject site and surrounding properties. The results of the search are presented in **Appendix B**. The search identified that there were no current or former prevention, clean-up or prohibition notices for the site.

3.4 Australian and NSW Heritage Register

A search of the Australian Heritage Trust database and the NSW Heritage Inventory was undertaken (JBS 41670-17108, June 2011), and the search did not identify the presence of any items of national or state significance on or in the vicinity of the site.

⁴ Burwood and District Historical Society Inc. http//dsweb.com.au/bhs/places accessed2/6/2001

3.5 WorkCover Dangerous Goods Database

A search of historical Dangerous Goods records held by WorkCover (JBS 41670-17108, June 2011) did not located any records pertaining to the site.

4. Conceptual Site Model

4.1 Areas of Environmental Concern

Based on the site history review and site inspection, the areas of environmental concern and associated potential contaminants of concern have been identified at the site, as noted in **Table 4.1.**

Table 4.1 Areas of Environmental Concern and Associated Contaminants of Potential Concern

Area of Environmental Concern (AEC)	Contaminant of Potential Concern (COPC)
Fill material along the western side of the site.	Soil Samples
Groundwater along the western boundary.	Heavy metals
Surface soils and groundwater in the vicinity of the former AST.	TRH/BTEX/PAH/Phenols
,	OCPs/OPPs
Fill material in garden beds.	PCBs
Landfill gases within fill material along the western side of	Asbestos
the site.	Groundwater Wells
the site.	Heavy metals
	TRH/BTEX/PAHs/Phenols
	Landfill gas

4.2 Potentially Contaminated Media

Fill material is a potentially contaminated media based upon:

- Imported fill soils of unknown composition distributed across the site has the potential to be contaminated based on the unknown origin and hence previous use of the fill; and
- Dependent upon the leachability of potential contaminants within fill material and surface soils, as well as the location of an AST in the northern portion of the site, the migration of contaminants into the underlying subsurface soils and groundwater may occur.

4.3 Potential for Migration, Exposure Pathways and Receptors

Contaminants generally migrate from a site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid/liquid and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants of concern identified as part of the site history review and site inspection are in solid and liquid form. Most the site surface soils are sealed beneath the building or carpark and drive areas. The remaining surface areas are well vegetated. Therefore, the potential for the migration of air-borne contaminants from the site is not significant.

The potential for migration via surface water is limited by the vegetated nature of the unsealed areas and the relatively impermeable nature of the sealed areas of the site.

The permeability of the surface soils in the unpaved areas of the site may result in a potential migration pathway via groundwater movement, if impacted soils are encountered at the site. As most the site surface is paved however, rainfall infiltration is expected to be minor. This reduces the potential for vertical contaminant migration through surface soils.

Given the presence of the landfill beneath Henley Park to the west of the site and the lack of available information about the material used to fill the former brick pit, there is the potential for landfill gases that may be being generated in the landfill to have migrated onto the site. The

principal gas generated by landfills is methane but other gases and vapours may have been generated depending upon materials present within the landfill.

4.4 Potential Exposure Pathways

Based on the COPC identified in various media as discussed above, the exposure pathways for the site include:

- Dermal;
- Ingestion; and
- Inhalation.

Due to the potential presence of impacted soil/fill on ground surfaces in areas of the site that may be accessed by future workers, dermal exposure must be considered a potential exposure pathway. In the event that dust is generated, ingestion and inhalation are considered to be potential exposure pathways.

As groundwater is not anticipated to be extracted under the proposed land use, dermal contact and ingestion of groundwater is considered to be unlikely. However, dependent on the depth to groundwater and the extent of contamination in near surface soils/fill, there is a potential for exposure to groundwater during future subsurface activities.

4.4.1 Receptors

Potential receptors of environmental impact present within the site which will be required to be addressed with respect to the suitability of the site for the proposed use include:

- Excavation/construction/maintenance workers conducting activities at the site, who may
 potentially be exposed to COPCs through direct contact with impacted soils and/or groundwater
 present within excavations and/or inhalation of dusts/fibres associated with impacted soils;
- Future occupants/users of the site may potentially be exposed to COPCs through direct contact
 with impacted soils and/or ingestion of impacted soils and/or inhalation of dusts / fibres
 associated with impacted soils; and/or
- Offsite sensitive receptors of groundwater; and/or
- Onsite ecological receptors on vegetated areas of the site.

4.5 Preferential Pathways

For the purpose of this assessment, preferential pathways have been identified as natural and/or man-made pathways that result in the preferential migration of COPCs as solids, liquids or gases.

Man-made preferential pathways are generally associated with fill materials, including backfill around utility trenches. Fill materials are anticipated to have a higher permeability than the underlying natural soil and/or bedrock.

5. Sampling and Analysis Plan

5.1 Data Quality Objectives

Data Quality Objectives (DQOs) have been developed for the investigation, as discussed in the following sections.

5.1.1 State the Problem

Potential contamination may exist at the site as presented in the conceptual site model (**Section 4**). No environmental sampling has been undertaken for the site and, as such, preliminary characterisation is required for the site to support redevelopment.

5.1.2 Identify the Decision

Based on the decision making process for assessing urban redevelopment sites detailed in DEC (2006), the following decisions must be made:

- Are there any unacceptable risks to likely future onsite receptors from soil?
- Are there any unacceptable human health and ecological risks present in groundwater underlying the site?
- Are there any potential risks from hazardous ground gases on site?
- Are there any impacts of chemical mixtures?
- Is there any evidence of, or potential for, migration of contaminants from the site?
- Is a site management strategy required?

5.1.3 Identify Inputs to the Decision

Inputs identified to provide sufficient data to make the decisions nominated above include:

- A review of available historical information;
- Physical observations and interpretation of fill and natural material through the collection of soil samples and laboratory chemical analysis results;
- Development of appropriate assessment criteria for evaluation of soil and groundwater impacts;
- Laboratory analysis of soil and groundwater samples of potentially contaminated media for COPC;
- Ground gas data as collected by sampling monitoring wells; and
- Confirmation that data generated by sample analysis are of an acceptable quality to allow reliable comparison to assessment criteria by assessment of quality assurance / quality control as per the data quality indicators established in **Section 5.1.6**.

5.1.4 Define the Study Boundaries

The study area is within Lot 3 in DP585664, as shown on Figure 2.

The vertical extent of the study will comprise:

- Soil approximately 0.3 m into the natural soil or to a maximum of 2 m depth, whichever is shallower;
- Groundwater monitoring wells installed to depths of approximately 2 m below the standing water table or a maximum of 8 m bgs (whichever is shallower); and

 Ground gases - the maximum depth of groundwater monitoring wells used for the investigation.

The current study does not include assessment of temporal changes in identified COPCs which is beyond the scope of this investigation. Therefore, results will be reflective of conditions at the time of the assessment.

5.1.5 Develop a Decision Rule

Soil and groundwater analytical data was assessed against NSW EPA endorsed criteria as identified in **Section 6**.

Statistical analyses of the data was undertaken, if required, in accordance with relevant guidance documents. The following statistical criteria was adopted:

- The upper 95% confidence limit on the average concentration for each analyte (calculated for samples collected from consistent soil horizons, stratigraphy or material types) must be below the adopted criterion;
- No single analyte concentration shall exceed 250% of the adopted criterion; and
- The standard deviation of the results must be less than 50% of the criterion.

The decision rules adopted to answer the decisions identified in **Section 5.1.2** are summarised in **Table 5.1**.

Table 5.1 Summary of Decision Rules

Table 312 Summary of Decision Nates				
Decisions Required to be Made	Decision Rule			
Are there any unacceptable	Soil analytical data compared against appropriate criteria.			
human health risks from soils underlying the site?	Statistical analyses of the data in accordance with relevant guidance documents, if appropriate, to facilitate the decisions. The following statistical criteria were adopted with respect to soils:			
	Either: the reported concentrations are all below the site criteria;			
	Or: the 95% upper confidence limit (UCL) of the average concentration for each analyte must be below the adopted site criterion; no single analyte concentration exceeds 250% of the adopted site criterion; and the standard deviation of the results must be less than 50% of the site criterion.			
	If the statistical criteria is satisfied, the decision is No.			
	If the statistical criteria is not satisfied, the decision is Yes.			
Are there any unacceptable human health and ecological	Groundwater analytical data was compared against appropriate criteria to evaluate the following occurrences:			
risks present in groundwater underlying the site?	The concentration of the contaminant in groundwater is, or will foreseeably be, above the appropriate criteria and will remain that way;			
	OR, there is separate-phase contamination of groundwater.			
	If the criteria is satisfied, the answer to the decision is yes.			
	If the criteria are not satisfied, the answer to the decision is no.			
Are there any potential risks from hazardous ground gases on site?	Soil gas data would be compared to criteria provided in Guideline for the Assessment and Management of Sites Impacted by Hazardous Ground Gases, NSW EPA 2012, where applicable.			
	If the collected data exceeds the applicable criteria, the answer to the decision is Yes.			
	If the collected data was less than the applicable criteria, the answer to the decision is No.			
Are there any impacts from chemical mixtures?	Are there more than one group of contaminants present which increase the risk of harm?			
	If there is, the decision is Yes.			
	Otherwise, the decision is No.			

Decisions Required to be Made	Decision Rule
Is there any evidence of, or	Is impacted groundwater or hazardous ground gases potentially migrating from site?
potential for, migration of contaminants from the site?	If yes, the decision is Yes.
contaminants from the site:	Otherwise, the decision is No.
Is a site management strategy	Is the answer to any of the above decisions Yes?
required?	If yes, a site management strategy is required.
	If no, a site management strategy is not required.
	The requirement for site management can be precluded by remediation of the areas of environmental impact that causes a site decision to be yes.

5.1.6 Specific Limits on Decision Errors

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from the NSW OEH⁵, NEPC (2013)⁶, ANZECC/ARMCANZ (2000)⁷, DEC (2007)⁸, appropriate indicators of data quality (DQIs used to assess quality assurance / quality control) and standard JBS&G procedures for field sampling and handling.

To assess the usability of the data prior to making decisions, the data will be assessed against predetermined DQIs for to precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS parameters).

The pre-determined DQIs established for the project are discussed below in relation to the PARCCS parameters, and are shown in **Table 5.2**.

- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory
 data that are generated during this study is a measure of the closeness of the analytical
 results obtained by a method to the 'true' value. Accuracy is assessed by reference to the
 analytical results of laboratory control samples, laboratory spikes and analyses against
 reference standards.
- Representativeness expresses the degree which sample data accurately and precisely
 represent a characteristic of a population or an environmental condition.
 Representativeness is achieved by collecting samples on a representative basis across the
 site, and by using an adequate number of sample locations to characterise the site to the
 required accuracy.
- Comparability expresses the confidence with which one data set can be compared with
 another. This is achieved through maintaining a level of consistency in techniques used to
 collect samples; and ensuring analysing laboratories use consistent analysis techniques;
 and reporting methods.

⁵ NSW Office of Environment and Heritage

National Environment Protection (Assessment of Site Contamination) Measure 2013, Amendment No. 1 2013, National Environment Protection Council (NEPC 2013)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volume 1 2000, Australian and New Zealand Environment and Conservation Council (ANZECC/ARMCANZ 2000)

Guidelines for the Assessment and Management of Groundwater Contamination 2007, Department of Environmental and Conservation (DEC 2007)

- Completeness is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.
- Sensitivity expresses the appropriateness of the chosen laboratory methods, including the limits of reporting, in producing reliable data in relation to the adopted site assessment criteria.

Table 5.2: Summary of Data Quality Indicators

Data Quality Indicators	Frequency	Data Quality Criteria
Precision		
Split duplicates (intra laboratory)	1 / 20 samples	<50% RPD ¹
Blind duplicates (inter laboratory)	1 / 20 samples	<50% RPD ¹
Laboratory Duplicates	1 / 20 samples	<50% RPD ¹
Accuracy		
Surrogate spikes	All organic samples	70-130%
Laboratory control samples	1 per lab batch	70-130%
Matrix spikes	1 per lab batch	70-130%
Representativeness		
Sampling appropriate for media and analytes	All samples	_2
Samples extracted and analysed within holding times.	-	Soil: organics (14 days), inorganics (6 months)
Laboratory Blanks	1 per lab batch	<lor< td=""></lor<>
Trip spike	1 per lab batch	70-130% recovery
Storage blank	1 per lab batch	<lor< td=""></lor<>
Rinsate sample	1 per sampling event when non-disposable sampling equipment used/media	<lor< td=""></lor<>
Comparability		
Standard operating procedures for sample collection & handling	All samples	All samples
Standard analytical methods used for all analyses	All samples	NATA accreditation
Consistent field conditions, sampling staff and laboratory analysis	All samples	All samples ²
Limits of reporting appropriate and consistent	All samples	All samples ²
Completeness		
Sample description and COCs completed and appropriate	All samples	All samples ²
Appropriate documentation	All samples	All samples ²
Satisfactory frequency and result for QC samples		95% compliance
Data from critical samples is considered valid	-	Critical samples valid
Sensitivity		
Analytical methods and limits of recovery appropriate for media and adopted Site assessment criteria	All samples	LOR<= Site assessment criteria

¹ If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgment will be made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

5.1.7 Optimise the Design of Obtaining Data

Based on the restricted access under existing, occupied buildings, JBS&G completed a limited soil and groundwater investigation, with assessments conducted at 10 accessible locations of the site.

5.2 Soil Sampling Methodology

Soil sampling was undertaken in conjunction with geotechnical investigations conducted by Douglas and Partners. Selected soil samples were collected during the geotechnical investigation drilling, as well as hand auguring in landscape areas. A total of 10 soil bores were investigated outside of the building footprint. Soil sampled were collected at near surface (0-0.2 m), 0.5 m and then at 1 m

² A qualitative assessment of compliance with standard procedures and appropriate sample collection methods will be completed during the DQI compliance assessment.

intervals to a maximum depth of 2 m below ground surface (mbgs) or 0.5 m into natural materials, whichever was shallower. During the collection of soil samples, features such as seepage, discolouration, staining, odours and other indicators of contamination were noted on the drilling logs (**Appendix C**). Seven of these samples were selected for analysis based on observations during sample collection.

Collected samples were immediately transferred to laboratory supplied sample jars. The sample jars were transferred to a chilled ice box for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody form was completed and forwarded with the samples to the testing laboratory. Preservation of the primary soil and QA/QC samples obtained during this investigation was completed in accordance with the protocols outlined in NEPC 2013. Based upon field observations, samples were analysed in accordance with the laboratory schedule in **Table 5.3**.

Not all samples collected were analysed. All samples remain at the primary laboratory for a period of two months for possible future analysis (subject to holding times), if required, following the receipt of sample results.

5.2.1 Field PID Screening

Soil samples were screened onsite during the works using a photo-ionisation detector (PID) to assess the potential presence of VOCs. Samples obtained for PID screening were placed in a sealed plastic bag for a period of approximately 5 minutes to equilibrate, prior to a PID being attached to the bag. Readings were then monitored for a period of approximately 1 minute or until values stabilised and the stabilised/highest reading was recorded on the borehole logs.

5.3 Groundwater Installation and Sampling Methodology

During the soil investigation, four groundwater monitoring wells were identified on the site. It is understood the wells were installed in late 2016.

It was observed that the wells were constructed from 50 mm uPVC screen and casing, combined with a lockable cap and steel gatic cover.

Prior to sampling, the monitoring wells were developed and allowed to settle for a minimum of 3 days after development. The monitoring wells were then gauged and sampled. Due to the depth to groundwater, the wells were sampled using dedicated, disposable bailers. Field parameters of pH, conductivity, redox and temperature were assessed.

Collected groundwater samples were immediately filtered (as necessary, e.g. for metals analysis) and/or transferred to laboratory supplied sample bottles. The sample containers were transferred to a chilled iced box for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody form was completed and forwarded with the samples. Samples were analysed in accordance with the laboratory schedule in **Table 5.3**.

5.4 Duplicate and Triplicate Sample Preparation

At selected sample points, sufficient soil was collected to provide a primary, duplicate and triplicate sample.

The collected soil sample was divided into three samples with minimal disturbance to reduce the potential for loss of volatiles and placed in three clean glass jars and sample bags as appropriate. Soil samples were not homogenised to minimise the loss of volatiles.

Each sample was labelled with primary, duplicate or triplicate sample identification before being placed in the same chilled esky for transport to the laboratory.

5.5 Laboratory Analyses

JBS&G contracted Eurofins | MGT Australia (Eurofins) at Lane Cove, NSW, as the primary laboratory for the required analyses, and Envirolab Services Pty Ltd (Envirolab) as the secondary laboratory.

Both laboratories are NATA registered for the required analyses. In addition, the laboratories were required to meet JBS&G internal QA/QC requirements. Laboratory analysis of samples was conducted as summarised in **Table 5.3**.

Table 5.3 Analytical Schedule

Sample Type	No. of Sampling Locations	Analyses (exc. QA/QC)
Soil	10 soil bores	Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) – 7 samples TRH/BTEX – 7 samples PAH/Phenols – 3 samples OCPs/OPPs – 3 samples PCBs – 3 samples Asbestos – 3 samples (500 mL per NEPC 2013)
Groundwater	4 locations	Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) – 4 samples TRH/BTEX/PAHs/Phenols – 4 samples

In addition to the above analyses, for QA/QC purposes field duplicates and triplicates were analysed at a rate of 1/20 primary samples. Rinsate samples were obtained from non-disposable sampling equipment, a single trip spike and single trip blank accompanied the soil sampling event.

6. Assessment Criteria

6.1 Regulatory Guidelines

The investigation was undertaken with consideration to aspects of the following guidelines, as relevant:

- National Environment Protection (Assessment of Site Contamination) Measure 1999, National Environment Protection Council, 2013 (NEPC 2013) Ecological Screening Levels (ESLs) for residential setting;
- NEPC (2013) Management Limits for residential settings;
- NEPC (2013) Health Screening Levels (HSLs) for vapour intrusion under residential settings;
- CRCCARE Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater, 2011, Friebel and Nadebaum (CRCCARE 2011) Health Screening Levels for direct contact to semi- and non-volatile TPH fractions as based on absence of criteria for exposure pathways in NEPC (2013);
- Contaminated Sites: Sampling Design Guidelines, NSW EPA, 1995 (EPA 1995);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, NSW OEH, 2011 (OEH 2011);
- Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 2nd Edition, NSW EPA, 2006 (DEC 2006);
- Contaminated Sites: Guidelines on Duty to Report Contamination under the Contaminated Land Management Act 1997, NSW Department of Environment and Climate Change, June 2009 (DECC 2009);
- NEPC (2013) Groundwater Investigation Levels (GILs) for fresh slightly to moderately disturbed systems (fresh water);
- NEPC (2013) Groundwater Investigation Levels (GILs) for drinking water;
- Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination, NSW Department of Environment and Conservation, March 2007 (DEC 2007);
- Australian and New Zealand guidelines for fresh and marine water quality, Volume 1 The Guidelines, Australia and New Zealand Environment and Conservation Council (ANZECC), 2000; and
- Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy.
 National Health and Medical Research Council (NHMRC), National Resource Management
 Ministerial Council (NRMMC), 2011, Commonwealth of Australia, Canberra (NHMRC/NRMMC 2011).

6.2 Assessment Criteria

6.2.1 Soil Investigation Criteria

As per the decision process for assessment of urban development site (DEC 2006), a set of health and ecological assessment thresholds derived from NEPC (2013) or other EPA approved guidelines was used for evaluation of site contamination data collected for this assessment. Residential land use with minimum opportunities for soil access was considered the most appropriate land use informing the site assessment criteria. The site soil assessment criteria is presented on **Table A** and summarised as follows:

• Health based investigation levels (HILs) for residential land use with minimum opportunities for soil access (HIL B);

- Health screening levels (HSLs) for vapour intrusion for residential land use, clay (HSL B);
- Management limits for TRH fractions, residential land use, fine soils;
- HSLs for asbestos in soil for residential land use with minimum opportunities for soil access (HSL B);
- Ecological investigation levels for residential land use with minimum opportunities for soil access, site specific; and
- Ecological screening levels (ESLs) for residential land use with minimum opportunities for soil access, fine soils.

EILs were calculated via the summing of ambient background concentrations (ABC) and added contaminant limits (ACL), based on soil characteristics of the site, as presented in Table A. ABCs were based on Olszowy et al (1995)9.

It is noted that soil characteristics including pH were not analysed, therefore EILS, including copper and zinc, requiring pH soil characteristic data were not calculated.

Where no criteria are present for a contaminant, the laboratory limit of reporting (LOR) has been used as an initial screening criteria.

6.2.2 Groundwater Investigation Criteria

The groundwater data will be compared against adopted site assessment criteria, namely:

Criteria for the 95% protection in freshwater water ecosystems presented in ANZECC (2000).

The site assessment criteria are presented in Table B. Freshwater trigger values have been adopted given the environmental conditions around the site. It is noted that, drinking water uses of groundwater at the site are not considered likely based upon the available groundwater data and anticipated future use of the site. As such, drinking water criteria have not be adopted within the site assessment criteria.

©JBS&G Australia Pty Ltd | 52680/109132

Trace element concentrations in soils from rural and urban areas of Australia, H Olszowy, P Torr, P Imray, Department of Human Services and Health, Environmental Protection Agency, published 1995 (Olszowy et al. 1995)

7. Quality Assurance/Quality Control

7.1 QA/QC Results

The QA/QC result for soil and water samples collected at the site are summarised in **Table 7.1** and discussed in **Section 7.2**. Detailed QA/QC results are included in the laboratory reports in **Appendix D**, and in the Esdat output included in **Appendix E**.

Table 7.1 - QA/QC Results Summary

Precision Call blind duplicator (intra laboratory)		
Coil blind duplington /: ntun lett1		
Soil blind duplicates (intra laboratory)	0-35% RPD	Yes
	Intra laboratory samples were analysed at a rate greater than 1	
	in 20 samples.	
Soil blind triplicates (inter laboratory)	0-36% RPD	Yes
	Intra laboratory samples were analysed at a rate greater than 1	
	in 20 samples.	
Water blind duplicates (intra laboratory)	0-156% RPD	Partial ¹
	Intra laboratory samples were analysed at a rate greater than 1	
	in 20 samples.	
Water blind triplicates (inter laboratory)	0-176% RPD	Partial ¹
	Intra laboratory samples were analysed at a rate greater than 1	
	in 20 samples.	
Laboratory duplicates	Sampling rate greater than 1 in 20.	Yes
	RPDs = 0-<50%	
	111 23 - 0 130/0	
Accuracy		
Surrogate spikes	1-29% Recovery	Partial ¹
	Surrogate spikes were completed for all organic samples	4
Laboratory Control Samples	31-131% Recovery	Partial ¹
	Laboratory control samples were completed for all organic and	
	metal analytes	1
Matrix spikes	40-69% Recovery	Partial ¹
	Matrix spikes were completed for all organic and metals samples	
Representativeness		
Sampling appropriate for media and	All sampling conducted in accordance with JBS&G procedures	Yes
analytes		
Laboratory blanks	Lead (filtered) water reported results equal to the LOR in report	Partial ¹
,	546369	
Samples extracted and analysed within	All samples were generally extracted and analysed within holding	Partial ¹
holding times.	times with the exception analysis on sample BH06_0.2-0.3	
	resubmitted for analysis.	
Trip spikes	83-102%	Yes
Trip blanks	<lor< td=""><td>Yes</td></lor<>	Yes
Rinsate blank	<lor< td=""><td>Yes</td></lor<>	Yes
	Rinsates collected with soil samples	
Comparability		•
Standard operating procedures used for	Field staff used same standard operating procedures throughout	Yes
sample collection & handling	works	
Standard analytical methods used	Standard analytical methods used.	Yes
Consistent field conditions, sampling staff	Sampling was conducted by a single staff member using standard	Yes
and laboratory analysis	operating procedures in the same conditions throughout the	
	works. The laboratories remained consistent throughout the	
	investigation.	
Limits of reporting appropriate and	Limits of reporting were consistent and appropriate.	Partial ¹
consistent		
Completeness		
Soil description & COCs completed	All logs and COCs were completed appropriately.	Yes
Appropriate documentation	All appropriate field documentation is included in the	Yes
Appropriate documentation		

Data Quality Indicator	Results	DQI met?
Satisfactory frequency/result for QC	The QC results are considered adequate for the purposes of the	Yes
samples	investigation.	
Data from critical samples is considered	Data from critical samples is considered valid.	Yes
valid		

1. See discussion of DQI exceedances in Section 7.2.

7.2 QA/QC Discussion

7.2.1 Precision

Soil Blind Duplicates (intra laboratory)

Soil field blind (intra-laboratory) duplicates were collected at a rate of greater than 1 per 20 primary samples analysed, meeting the 1/20 DQI frequency. Blind (intra laboratory) duplicates for soil RPDs were all within the JBS&G acceptable limit (0-50%).

Soil Blind Triplicates (inter laboratory)

Soil field blind (inter-laboratory) triplicates were collected at a rate of greater than 1 per 20 primary samples analysed, meeting the 1/20 DQI frequency. Blind (inter laboratory) triplicates for soil RPDs were all within the JBS&G acceptable limit (0-50%).

Water Blind Duplicates (intra laboratory)

Water field blind (intra-laboratory) duplicates were collected at a rate greater than 1 per 20 primary samples analysed, meeting the 1/20 DQI frequency. Blind (intra laboratory) duplicates for water RPDs were all within the JBS&G acceptable limit (0-50%) except for the following:

- Lead (MW01-01/QA1), with an RPD of 164%;
- Mercury (MW01-01/QA1), with an RPD of 156%
- C15-C28 (MW01-01/QA1), with an RPD of 67%;
- C29-C36 (MW01-01/ QA1), with an RPD of 67%;
- C10-C36 (MW01-01/QA1), with an RPD of 120%; and
- >C16-C34 (MW01-01/ QA1), with an RPD of 133%.

The elevated RPDs reported for intra laboratory duplicates are considered to be acceptable with consideration to reported contaminant concentration and the reported LOR. As a conservative measure, the higher reported concentration in the primary and duplicate samples were considered when comparing against site assessment criteria.

Water Blind Triplicates (inter laboratory)

Water field blind (inter-laboratory) triplicates for water were collected at a rate of greater than 1 per 20 primary samples analysed, meeting the 1/20 DQI frequency. Blind (inter laboratory) triplicates for were RPDs were all within the JBS&G acceptable limit (0-50%), except for the following:

- Lead in MW01-01/QC1, with an RPD of 164%; and
- Mercury in MW01-01/QC1, with an RPD of 176%.

The elevated RPD results from the groundwater blind duplicates and triplicates are not considered to influence the outcome of the investigation given the low concentrations of COPCs detected, which were generally below or close to the site groundwater criteria.

Laboratory Duplicates

All laboratory duplicate results were within the JBS&G acceptable range (0-50%) for all; COPCs.

7.2.2 Accuracy

Surrogate spike recoveries were outside the acceptable range of 70-130%. However, most of these exceedances were still within the NATA acceptable limits of 50-150% and are therefore considered to be within an acceptable range.

Laboratory control sample (LCS) recoveries have been reported for analysis of all constituents for the analytical batches. Twenty-three analytes reported recoveries outside of the acceptable range (70-130%). However, this is not considered to affect the accuracy of the report as the results were generally within the NATA qualified laboratories limits.

Matrix spike recoveries were within the acceptable range of 70-130%, except for:

- Six individual compounds of phenols (2-Methylphenol (o-Cresol), 2-Nitrophenol, 2.4-Dichlorophenol, 3&4- Methylphenol(m&p Cresol), 4-Chloro-3-methylphenol and 2.6-Dichlorophenol) with reported matrix spikes ranging between 32% and 69%; and
- An individual compound of PAH (benzo(b&j)fluoranthene) with a matrix spike of 65%.

Five of the seven matrix spike recoveries exceedances were within the NATA accredited lab method acceptable range for matrix recoveries which is 60-140%. Given that reported results were below the LOR and almost all spike recoveries were below the acceptable range for the method, the exceptions to the JBS&G acceptable range are not considered to affect the overall reliability or accuracy of the data.

7.2.3 Representativeness

The extraction and analysis of critical soil samples was generally completed within the recommended holding times for all analytes. A number of VOC's were analysed beyond the holding times when sample BH06-0.2-0.3 was re-submit for analysis.

A rinsate sample was collected from the drill rig during soil sampling. All results were below the LOR, indicating no cross-contamination was evident between soil samples.

A trip spike was submitted with soil and groundwater samples collected during the assessment. Trip spike recovery was within the acceptable limits of 70-130%.

A storage blank was submitted with the soil samples collected during the assessment. There were no reported concentrations of BTEX compounds above the laboratory LOR.

Lead (filtered) within the method blank submitted with report 546369 reported a concentration of 0.001 mg/l equal to the laboratory LOR. All primary samples within report 546369 were resubmitted for analysis of heavy metals with the results reported in 548010. Reported concentrations of all analytes reported within lab report 548010 were <LOR in laboratory blank samples.

All field equipment was decontaminated, where required and calibrated appropriately as per the standard procedures.

7.2.4 Comparability

Samples were submitted to Eurofins | mgt, the primary laboratory, and Envirolab Services, the secondary. Both laboratories are NATA accredited for all analytical methods used.

Experienced JBS&G personnel undertook all sampling in accordance with standard JBS&G sampling methods.

Field staff were consistent during soil investigation, and similarly during groundwater sampling.

7.2.5 Completeness

All laboratory and field documentation is complete and correct. Chain of custody documentation is provided with laboratory reports in **Appendix D**.

The frequency of analysis of all QC samples was considered appropriate and valid.

7.2.6 Sensitivity

Laboratory analysis methods for all contaminants in soil adopted during the investigation used limits of reporting less than the site assessment criteria to ensure that contaminant concentrations could be confidently identified as being less than the adopted soil site assessment criteria.

Some groundwater analytes, including heavy metals, TRH, BTEX and naphthalene within laboratory report 546369 had LOR values above the adopted site criteria. These samples were resubmitted for analysis against the lower LOR with reported results provided in **Table A**.

7.3 QA/QC Conclusions

The field sampling and handling procedures produced QA/QC results which indicate that the soil and groundwater data are of an acceptable quality and suitable for use in site characterisation.

The NATA certified laboratory results sheets indicate that the project laboratory was generally achieving levels of performance within its recommended control limits during the period when the samples from this program were analysed.

The non-conformances described in **Section 7.2** are considered to be minor in nature and acceptable given the many results falling within the NATA accredited method acceptance range, and results are significantly below the adopted site assessment criteria.

On the basis of the results of the field and laboratory QA/QC program, the soil and groundwater data are of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site.

8. Discussion of Soil Results

8.1 Soil Observations

Sample locations are shown on **Figure 2**, and the geology encountered at the site during the field works is summarised below. Borelogs are presented in **Appendix C**.

Fill material was encountered at all sampling locations ranging from 0.4 to 1.2 m bgs. In roadway areas, fill was generally found to consist road base, gravelly sand underlain by clayey silt or gravelly clay with trace levels of sand inclusions. In grassed / vegetated or garden bed areas the fill was generally found to consist sandy silt underlain by gravelly silty clay or gravelly sandy clay with organic matter inclusions. Fill was underlain by natural brown mottled red or grey mottled red clay or weathered siltstone.

No staining, odours were encountered during the investigation. No ACM was observed during the investigation. PID reads from sampled soils ranged between 0 and 6.4 ppm.

8.2 Soil Analytical Results

The soil sampling locations are shown on **Figure 2**. Detailed laboratory reports and chain of custody documentation are provided in **Appendix D**.

Review of results indicated that the LOR in sample BH06_0.2-0.3 for selected analytes (BTEX, naphthalene and TRH fractions C6-C9, C6-C10, F1) had been raised. This sample was resubmitted for analysis of the above-mentioned analytes. Results of the resubmitted analysis along with summarised soil laboratory results are presented in **Table A** and discussed in the following sections.

8.2.1 Metals

The concentrations of heavy metals in soil samples selected for analysis were all less than the LOR or the adopted health based criteria except for lead concentrations in sample BH10_0.0-0.1 (3,500 mg/kg) exceeding HIL B (1,200 mg/kg).

All heavy metal concentrations were reported at or below the LOR the adopted ecological criteria except for lead concentrations in BH10 0.0-0.1 (3,500 mg/kg) exceeding EIL (1,100 mg/kg).

8.2.2 TRH/BTEX

The concentrations of TRH and BTEX in the soil samples selected for analysis were all less than the site assessment criteria and generally below the LOR.

8.2.3 PAHs

PAH concentrations in samples selected for analysis were below the LOR and adopted site assessment criteria.

8.2.4 OCPs/PCBs

OCP and PCB concentrations were reported below the laboratory LOR in all samples selected for analysis and less than the adopted site assessment criteria.

8.2.5 Phenols

Phenol concentrations were reported below the laboratory LOR in all samples selected for analysis and less than the adopted site assessment criteria.

8.2.6 Asbestos

Asbestos in the form of ACM was not observed in the fill material during drilling or hand augering. No asbestos was detected in samples selected for analysis.

9. Discussion of Groundwater Results

9.1 Groundwater Observations

Monitoring well locations are shown on **Figure 2**, a summary of groundwater parameters is presented below, and groundwater analytical data with comparison to the adopted groundwater site assessment criteria is presented in **Table B**.

Tabulated values for the measured depth to groundwater and corresponding relative groundwater levels, are presented in **Table C**.

The depth to water measured in monitoring wells, prior to sampling (16th May 2017), ranged between 1.038 m below top of casing (m btoc) (MW01) and 7.720 m btoc (MW03).

Field notes provided for the groundwater investigation indicate that groundwater purged from the sampled wells was turbid and brown in colour. No odours or sheen was observed in the sampled waters.

The ranges of field measured parameters for the water samples were as follows:

- The pH ranged from 6.55 (MW01) to 6.92 (MW03);
- Electrical conductivity ranged from 5.28 mS/cm (MW01) to 9.82 mS/cm (MW03);
- Uncorrected redox potential ranged from -4 mV (MW03) to 369 mV (MW01); and
- Dissolved oxygen ranged from 2.41 ppm (MW02) to 172 ppm (MW01).

9.2 Groundwater Analytical Results

The groundwater monitoring well locations are shown on **Figure 2**. Detailed laboratory reports and chain of custody documentation are provided in **Appendix D**.

Review of results indicated that the LOR for heavy metals in samples MW01-01, MW02-01, MW03-01 and MW04-01 had been raised. These sample was resubmitted for analysis of heavy metals. Results of the resubmitted analysis along with summarised groundwater laboratory results are presented in **Table B** and discussed in the following sections.

9.2.1 Metals

The concentration of heavy metals within groundwater samples were below the site assessment criteria and generally below the LOR, except for:

- Copper concentrations in groundwater monitoring well sample MW02-01 (0.003 mg/L) exceeding the ANZECC 2000 95% protection of freshwater criteria of 0.0014 mg/L;
- Nickel concentrations in groundwater monitoring well sample MW03-01 (0.023 mg/L) exceeding the ANZECC 2000 95% protection of freshwater criteria of 0.011 mg/L; and
- Zinc concentrations in groundwater monitoring well samples MW01-01 (0.084 mg/L), MW02-01 (0.015 mg/L), MW03-01 (0.015 mg/L), MW04-01 (0.01 mg/L) exceeding the ANZECC 2000 95% protection of freshwater criteria of 0.008 mg/L.

9.2.2 TRH/BTEX

TRH was identified at low levels in MW01, MW03 and MW04, however, BTEX and naphthalene were below laboratory LORs and no concentrations exceeded the site assessment criteria. It is considered likely the TRH concentrations are associated either with monitoring well installation (by others) or naturally occurring.

9.2.3 PAHs

PAH concentrations in groundwater samples selected were below the LOR and adopted site assessment criteria.

9.2.4 Phenols

Phenol concentrations were reported below the laboratory LOR in all groundwater samples and less than the adopted site assessment criteria.

10. Site Characterisation

Based on the decision-making process for assessing urban redevelopment sites detailed in DEC (2006) and discussed in **Section 5.1.5**, the decisions required to be made are discussed below.

10.1 Potential Risks to Future Onsite Receptors

Representative samples of fill material were analysed for a range of identified potential contaminants of concern including heavy metals, TRH/BTEX, PAH, OCPs, PCBs and asbestos.

The concentration of lead within soil sample BH10_0.0-0.1 represents a potentially unacceptable risk to human and ecological receptors at the site. BH10 was located in the fill embankment along the western boundary of the site. The elevated concentrations of lead at the near surface could be related to the presence of fill within this area.

All other samples indicated contaminants were below the laboratory LOR or the adopted site criteria.

Groundwater analytical data indicates that copper, nickel and zinc concentrations exceed groundwater investigation levels for 95% protection in fresh water ecosystems. However, there is no beneficial use of groundwater on the site or in the surrounding area. Therefore, it is considered that these impacts do not cause a potential risk to onsite receptors and likely reflect background conditions.

10.2 Background Soil Concentrations

Soil samples collected within fill were submitted for analysis as part of the limited analytical programme. Except for BH10, concentrations of analytes were detected at relatively low levels and background soil concentrations in natural soils (clay and shale) are expected to be low.

10.3 Chemical Mixtures

There were no potential chemical mixtures identified during the investigation that may pose an unacceptable contamination risk at the site with respect to future site users.

10.4 Aesthetic Issues including Odours

No significant odours or staining was identified during the investigation. No ACM was observed.

10.5 Potential Migration of Contaminants

The potential for migrations of contaminants from the site is considered to be generally low based upon the general absence of significant surface soil contamination, and surface coverage of the site in hardstand or predominantly vegetated ground.

The vertical extent of the lead exceedance in BH10 is unknown as the borehole was unable to progressed to depth during the field work programme. The lateral extent of the lead exceedance has not been identified given the location of BH10 relative to the western boundary and the limited intrusive investigation onsite.

Potential for contaminant migration is low due to the low concentration of analytes present in groundwater. The depth to groundwater was significantly deeper than where soil contaminants were identified on the site. Furthermore, the soils at the site are considered to have a relatively low permeability due to the presence of firm clay soils. As such, soil contaminants from site related activities are unlikely to migrate into groundwater.

10.6 Site Management Strategy

Based on the scope of works completed, including a desktop review and limited intrusive investigations, and the limitations presented in **Section 12**, the current investigation did not identify widespread contamination in the soil or groundwater.

11. Conclusions and Recommendations

Based on the scope of work and subject to the limitations in **Section 12**, the following summarises the findings and conclusions of the assessment:

- The site remained vacant until the construction of the present day building circa 1986. The
 surrounding land use has been predominantly residential in nature, except for the quarry
 situated immediately west of the site. The quarry is visible in the 1930 aerial image and
 appears to have been filled in the 1980's;
- During the investigation, fill material was encountered at all sampling locations ranging from 0.4 to 1.2 m bgs. Fill material generally comprised road base, gravelly sand underlain by clayey silt or gravelly clay with trace levels of sand inclusions in road way areas. In grassed / vegetated or garden bed areas the fill was generally found to consist sandy silt underlain by gravelly silty clay or gravelly sandy clay with organic matter inclusions;
- A limited number of samples representative of fill material were analysed for a range of identified potential contaminants of concern including heavy metals, TRH/BTEX, PAH, OCPs, PCBs and asbestos;
- Four existing groundwater wells were sampled for a range of contaminants of potential concern (COPC) including heavy metals, TRH/BTEX, PAH and phenols;
- All other COPCs were below the laboratory LOR or the adopted human health based site
 assessment criteria and therefore do not pose a potentially unacceptable risk to future onsite receptors, except for:
 - Concentrations of lead exceeded the adopted health and ecological site soil assessment criteria at one shallow soil sampling location (BH10). The lateral and vertical extent of the lead exceedance has not been identified and remains a data-gap; and
 - Groundwater investigations identified copper, nickel and zinc above site criteria for fresh water ecosystems, however, it is considered the concentrations are representative of regional groundwater and not related to contamination of the site. There is no known beneficial use of groundwater on the site or in the surrounding area.

Based on the findings of the investigation, it is recommended that prior to site redevelopment the fill materials present on site be fully characterised to support appropriate management during construction. During further site investigations, the low potential for landfill gas migrating onto the site should be assessed by appropriate sampling.

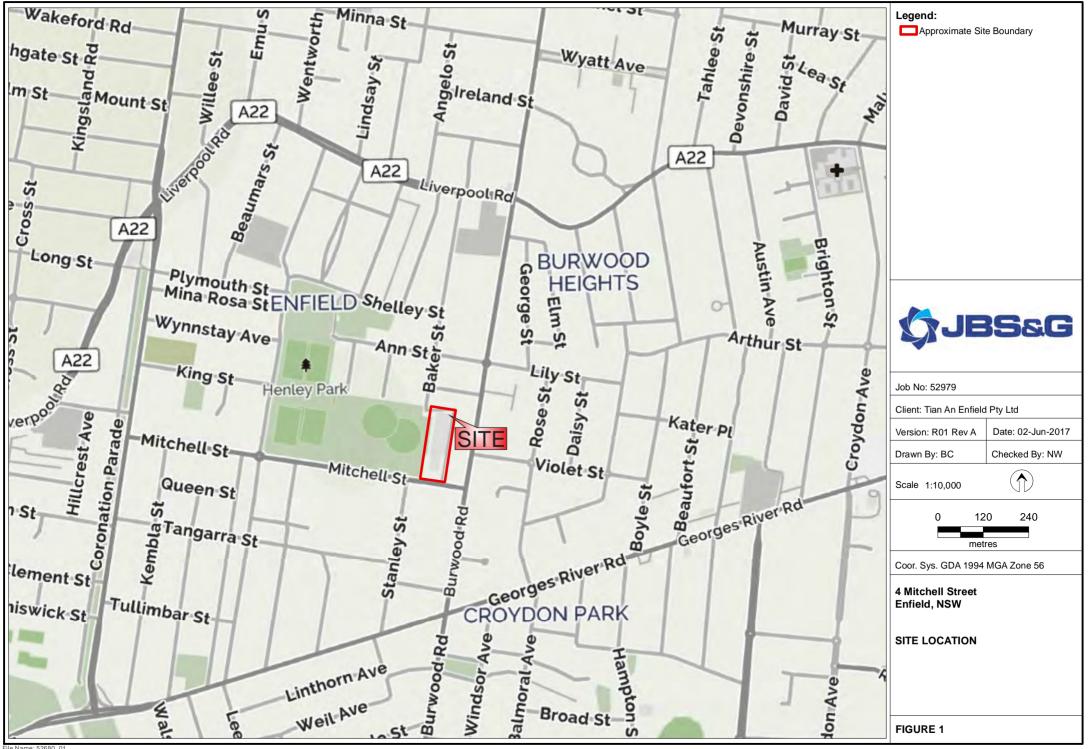
12. Limitations

This report has been prepared for use by the client who has commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the client and other parties.

The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

JBS&G accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS&G, and should not be relied upon by other parties, who should make their own enquires.

Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements.


Limited sampling and laboratory analyses were undertaken as part of the investigations undertaken, as described herein. Ground conditions between sampling locations and media may vary, and this should be considered when extrapolating between sampling points. Chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.

This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS&G reserves the right to review the report in the context of the additional information.

Figures

Legend:

Approximate Site Boundary

Borehole Sample Location

Monitoring Well Sample Location

Job No: 52979

Client: Tian An Enfield Pty Ltd

Version: R01 Rev A Date: 05-Jun-2017

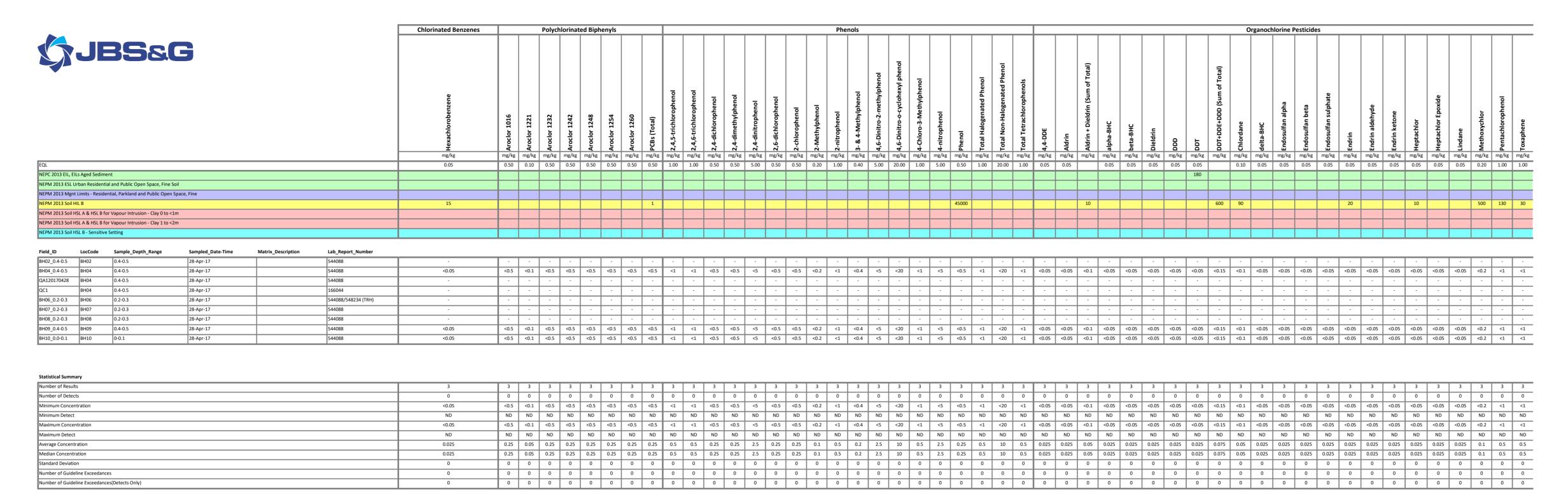
Drawn By: BC Checked By: NW

Scale 1:1.500

Coor. Sys. GDA 1994 MGA Zone 56

4 Mitchell Street Enfield, NSW

SITE LAYOUT & SAMPLE LOCATIONS


FIGURE 2

Tables

~							Meta	als & Metal	loids			TP	Hs (NEPC	1999)			TRH	s (NEPC 2	2013)				BTEX	(Pol	ycyclic Ar	omatic Hyd	drocarbo	ns					
S J	BS&	G			Arsenic (Total)	Cadmium	Chromium (Total)	Copper	Mercury (Inorganic)	Vickel	Zinc Groetion	210-C14 Fraction	C15-C28 Fraction	229-C36 Fraction	C10-C36 Fraction (Total)	>c.10-c.16 Fraction	C34-C40 Fraction	>C10-C40 Fraction (Total)	>C10-C16 less Naphthalene (F2)	C6-C10 Fraction C6-C10 less BTEX (F1)	Senzene	ethylbenzene	Foluene	kylene (o) Kylene (m & p)	Kylene (Total)	Acenaphthene	Acenaphthylene Anthracene	Senz(a)anthracene	3enzo(a)pyrene	3enzo(a)pyrene TEQ (lower bound)*	3enzo(a)pyrene TEQ (medium bound)*	senzo(a)pyrene IEQ (upper bound)* Senzo(b,j)fluoranthene	3enzo(g,h,i)perylene	Senzo(k)fluoranthene	.nrysene Dibenz(a,h)anthracene	Fluoranthene	luorene	ndeno(1,2,3-t,d)pyrene Naphthalene	Carcinogenic PAHs as B(a)P TEQ	Phenanthrene	yrene
					mg/kg	mg/kg m	ng/kg n	ng/kg mg/kg	mg/kg	mg/kg m	ng/kg mg	/kg mg/l	kg mg/kg	mg/kg m	ig/kg mg	g/kg mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/k	g mg/kg	mg/kg n	ng/kg mg/	kg mg/kg	mg/kg	mg/kg	mg/kg mg	g/kg mg/kg	g mg/kg	mg/kg mg	g/kg mg/k	g mg/kg	mg/kg mg	/kg mg/k	mg/kg	mg/kg	mg/kg
QL					2.00	0.40	1.00	1.00 1.00	0.10	1.00	1.00 20	00 20.0	00 50.00	50.00 5	0.00 50	0.00 100.00	0 100.00		50.00	20.00 20.00	0.10	0.10	0.10	0.10 0.20	0.30	0.50	0.50 0.5	0.50	0.50	0.50	0.50 0.	.50 0.50	0.50	0.50 0.	.50 0.50	0.50	0.50 0.	50 0.50		0.50	0.50
IEPC 2013 EIL, EILs Aged Sec	liment				100			1100		220																												170			
IEPM 2013 ESL Urban Resid	ential and Public Open Space, Fir	e Soil													12	20 1300	5600		120	180 180	65	125	105		45				0.7												
IEPM 2013 Mgnt Limits - Re	sidential, Parkland and Public Op	en Space, Fine													10	3500	10000			800																					
IEPM 2013 Soil HIL B					500	150	500 3	30000 1200	120	1200 6	0000																												4		
IEPM 2013 Soil HSL A & HSL	B for Vapour Intrusion - Clay 0 to	<1m																	280	50	0.7	NL	480		110													5			
IEPM 2013 Soil HSL A & HSL	B for Vapour Intrusion - Clay 1 to	<2m																	NL	90	1	NL	NL		310													NL			
IEPM 2013 Soil HSL B - Sens	tive Setting																		110	45	0.5	55	160		40													3			
ield_ID LocCode	Sample_Depth_Range	Sampled_Date-Time	Matrix_Description	Lab_Report_Number																																					
H02_0.4-0.5 BH02	0.4-0.5	28-Apr-17		544088	3.5	<0.4	12	25 17	<0.1	19	54 <2	20 <20) <50	<50	<50 <5	50 <100	<100	.	<50	<20 <20	<0.1	<0.1	<0.1	<0.1 <0.2	<0.3	-		-	- 1	-	-		1 - 1			1 - 1	-	- <0.5	-	- 1	- T
H04_0.4-0.5 BH04	0.4-0.5	28-Apr-17		544088	5.7	<0.4	19	28 13	<0.1	36	39 <2	20 <20	> <50	<50	<50 <5	50 <100	<100	- 1	<50	<20 <20	<0.1	<0.1	<0.1	<0.1 <0.2	<0.3	<0.5	<0.5 <0	5 <0.5	<0.5	<0.5	0.6 1	.2 <0.5	<0.5	<0.5 <0	0.5 <0.5	<0.5	<0.5 <0	0.5 <0.5	<1.21	<0.5	<0.5
A120170428 BH04	0.4-0.5	28-Apr-17		544088	4	<0.4	16	30 12	<0.1	31	35 <2	20 <20	> <50	<50	<50 <5	50 <100	<100	- 1	<50	<20 <20	<0.1	<0.1	<0.1	<0.1 <0.2	<0.3	-	- -	-	1 - 1	-	-	- -	1 - 1	- -	. -	 - 	-	- <0.5	-	- 1	-
C1 BH04	0.4-0.5	28-Apr-17	<u> </u>	166044	6	<0.4	21	24 12	<0.1	25	32 <2	25 <50	_	<100	- <	50 <100	<100	<50	<50	<25 <25	<0.2	<1	<0.5	<1 <2	<1	-	- -	-	1 - 1	-	-	. .	1 . 1	- -	. .	1 - 1	-	- <1	-	 . 	
H06_0.2-0.3 BH06	0.2-0.3	28-Apr-17	<u> </u>	544088/548234 (TRH)	5.9	<0.4	22	11 30	<0.1	17	33 <2	20 <20	> <50	<50	<50 <5	50 <100	<100	1	<50	<20 <20	<0.1	<0.1	<0.1	<0.1 <0.2	<0.3	-	- -	-	1 - 1	-	-	. .	1 - 1	- -	- -	1 - 1	-	- <0.05	-	 	-
H07_0.2-0.3 BH07	0.2-0.3	28-Apr-17	1	544088	16	<0.4	16	12 49	<0.1	5.1	68 <2	20 <20	> <50	60	60 <5	50 <100	<100	- 1	<50	<20 <20	<0.1	<0.1	<0.1	<0.1 <0.2	<0.3	-	- -	-	1 - 1	-	-		1 - 1	- -	- -	- 1	-	- <0.5	-	-	
H08_0.2-0.3 BH08	0.2-0.3	28-Apr-17		544088	3	<0.4	11	11 17	<0.1	6.9	28 <2	20 <20	> <50	<50	<50 <5	50 <100	<100	- 1	<50	<20 <20	<0.1	<0.1	<0.1	<0.1 <0.2	<0.3	-	- -	-	1 - 1	-	-		1 - 1			- 1	-	- <0.5	-	-	
H09_0.4-0.5 BH09	0.4-0.5	28-Apr-17		544088	<2	<0.4	34	46 <5	<0.1	160	59 <2	20 <20	54	94 :	148 <5	50 120	<100	- 1	<50	<20 <20	<0.1	<0.1	<0.1	<0.1 <0.2	<0.3	<0.5	<0.5 <0	5 <0.5	<0.5	<0.5	0.6 1	.2 <0.5	<0.5	<0.5 <0	0.5 <0.5	<0.5	<0.5 <0	0.5 <0.5	<1.21	<0.5	<0.5
H10_0.0-0.1 BH10	0-0.1	28-Apr-17	1	544088	5.7	<0.4	8.5	17 3500	<0.1	6.8	44 <2	20 <20	250	170	170	50 100	100	. .	<50	<20 <20	<0.1	<0.1	<0.1	<0.1 <0.2	<0.3	<0.5	<0.5 <0	5 <0.5	<0.5	<0.5	0.6 1	2 <0.5	<0.5	<0.5	0.5 < 0.5	<0.5	<0.5	15 <0.5	<1.21	<0.5	-05

Charlested Common																																											
Statistical Summary																																											
Number of Results	9	9	9	9	9	9	9	9	9	9	9	9	8	9 9	9	1	9	9	9	9	9	9	9	9	9 3	3 3	3 3	3	3	3	3	3	3 3	3	3	3	3	3	3	9 3	3	3	3
Number of Detects	8	0	9	9	8	0	9	9	0	0	1	3	3	0 2	1	0	0	0	0	0	0	0	0	0	0 0) (0	0	0	0	3	3	0 0	0	0	0	0	0	0	0 0	0	0	0
Minimum Concentration	<2	<0.4	8.5	11	<5	<0.1	5.1	28	<20	<20	<50	<50 <	:50 <	50 <10	0 <100	<50	<50	<20	0 <20	<0.1	<0.1	<0.1	<0.1	<0.2	0.3 <0).5 <0	0.5 <0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	0.05 <1.2	21 <0.5	5 <0.5	<0.5
Minimum Detect	3	ND	8.5	11	12	ND	5.1	28	ND	ND	54	60	60 N	ND 100	100	ND	ND	ND) ND	ND	ND	ND	ND	ND N	ND N	D N	D ND	ND	ND	ND	0.6	1.2	ND ND	ND	ND	ND	ND	ND	ND	ND NE) ND) ND	ND
Maximum Concentration	16	<0.4	34	46	3500	<0.1	160	68	<25	<50	<100	170 1	.70 <	50 120	100	<50	<50	<25	5 <25	<0.2	<1	<0.5	<1	<2	<1 <0).5 <0).5 <0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1 <1.2	21 <0.5	5 <0.5	<0.5
Maximum Detect	16	ND	34	46	3500	ND	160	68	ND	ND	54	170 1	.70 N	ND 120	100	ND	ND	ND) ND	ND	ND	ND	ND	ND N	ND N	D N	D ND	ND	ND	ND	0.6	1.2	ND ND	ND	ND	ND	ND	ND	ND	ND NE) ND) ND	ND
Average Concentration	5.6	0.2	18	23	406	0.05	34	44	10	12	31	55	63 2	25 63	56		25	10	10	0.056	0.1	0.072	0.1	0.2 0	.19 0.2	25 0.	25 0.25	0.25	0.25	0.25	0.6	1.2	0.25 0.25	0.25	0.25	0.25	0.25	0.25	0.25	.25 0.6	0.25	5 0.25	0.25
Median Concentration	5.7	0.2	16	24	17	0.05	19	39	10	10	25	25	25 2	25 50	50	25	25	10	10	0.05	0.05	0.05	0.05	0.1 0	.15 0.2	25 0.	25 0.25	0.25	0.25	0.25	0.6	1.2	0.25 0.25	0.25	0.25	0.25	0.25	0.25	0.25	.25 0.60	0.25	5 0.25	0.25
Standard Deviation	4.2	0	7.6	11	1160	0	48	14	0.83	5	12	49	61	0 27	17		0	0.83	3 0.83	0.017	0.15	0.067	0.15	0.3 0	.12 0		0	0	0	0	0	0	0 0	0	0	0	0	0	0 (.12 0	0	0	0
Number of Guideline Exceedances	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0) (0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0) (0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0

																Organo	phospho	orus Pestic	cides											Herbicides & Fungicides	Ionic Ba	lance				Asbes	stos				$oldsymbol{oldsymbol{oldsymbol{\Box}}}$	Other
\$	JE	35&0	3			zinphos methyl	hlorfenvinphos hlorpyrifos	hlorpyrifos-methyl oumaphos	emeton-O	emeton-S	lazinon ichlorvos	imethoate	Isunoton	thion	thoprophos	enitrothion	ensulfothion enthion	nalathion	rerphos	devinphos	methoate	arathion	aratinon metnyr horate	irimiphos methyl	yrazophos onnel	ulprofos	eroutos etrachlorvinphos	okuthion	richloronate	inoseb	ation Exchange Capacity	EC 1:5 soil:water	pprox. Sample Mass	sbestos from FA & AF in Soil	lass ACM	nass Asbestos in ACM		lass Asbestos in FA	nass AF nass Asbestos in AF	≘. ≘	8	
						mg/kg	mg/kg mg/kg	mg/kg mg/kg	mg/kg m	ng/kg mg	g/kg mg/kg	mg/kg mg	/kg mg/k	kg mg/kg	mg/kg	mg/kg m	g/kg mg/	kg mg/kg	mg/kg	mg/kg mg	/kg mg/kg	mg/kg mg	/kg mg/kg	mg/kg	mg/kg mg/kg	mg/kg mg	g/kg mg/l	kg mg/kg	mg/kg	mg/kg	meq/100g		g %w/	/w %w/w	g	g	g	g	g g	, <u>e</u>	- ^	% %
EQL							0.20 0.20																							20.00	0.05	10.00	$\overline{}$	\neg	\top				\neg	$\overline{}$	1.0	.00 1.00
NEPC 2013 EIL,	Ls Aged Sedime	ent																																								
NEPM 2013 ESL	Irban Residentia	al and Public Open Space, Fine Soi																																								
NEPM 2013 Mg	Limits - Reside	ntial, Parkland and Public Open Sp	ace, Fine																																							
NEPM 2013 Soil	IIL B						340																																			
NEPM 2013 Soil	ISL A & HSL B fo	or Vapour Intrusion - Clay 0 to <1n																																								
NEPM 2013 Soil	ISL A & HSL B fo	or Vapour Intrusion - Clay 1 to <2n	ı																																						47	
NEPM 2013 Soil	ISL B - Sensitive	Setting																																								
Field_ID	LocCode	Sample_Depth_Range	Sampled_Date-Time	Matrix_Description	Lab_Report_Number																																					
BH02_0.4-0.5	BH02	0.4-0.5	28-Apr-17		544088	-			-	-		-		-	-	-		- '	-		-			-				-	-	-	-	-		-	-	-	-	-		-	-	- 6.7
BH04_0.4-0.5	BH04	0.4-0.5	28-Apr-17		544088	<0.2	<0.2 <0.2	<0.2 <2	<0.2	<0.2 <	0.2 <0.2	<0.2 <	0.2 <0.2	2 <0.2	<0.2	<0.2 <	0.2 <0.	.2 <0.2	<0.2	<0.2 <	2 <2	<0.2 <0	0.2 <0.2	<0.2	<0.2 <0.2	<0.2 <0	0.2 <0.	2 <0.2	<0.2	<20	-	·	568 0	0	0	0	0	0	0 0	0	-	- 18
QA120170428	BH04	0.4-0.5	28-Apr-17		544088	-			-	-		-		-	-	-			-					·				-	-	-	-	·		-	-	-	-	-		-	-	- 15
QC1	BH04	0.4-0.5	28-Apr-17		166044	-			-	-		-		-	-	-		- '	-	- -			- -	-			- -	-	-	-	-	-		-	- '	-	- 1	-		-	-	
BH06_0.2-0.3	BH06	0.2-0.3	28-Apr-17		544088/548234 (TRH)	-			-	-		-		-	-	-		T - '	-				- -	-				-	·	-	15	90		-	1 -	-		-		-	8.8	.8 13
BH07_0.2-0.3	BH07	0.2-0.3	28-Apr-17		544088	-			-	-		-		-	-	-		- '	-					-				-	·	-	-	-		-	-	-		-		-	-	- 18
BH08_0.2-0.3	BH08	0.2-0.3	28-Apr-17		544088	·	- -		-	-		-		-	-	-		7 - 7	-				- -	-		· ·		-	·	-		·		-	1	T-		-		1	1	- 7.9
BH09_0.4-0.5	BH09	0.4-0.5	28-Apr-17		544088		<0.2 <0.2																							<20		·	1029 0	0	0	0	0	0	0 0	0	-	- 5.7
BH10_0.0-0.1	BH10	0-0.1	28-Apr-17		544088	40.2	<0.2 <0.2	(0.2)	40.2	-0.2	0.2	40.2	2 1 40 2	2 .0.2	-0.2	-0.2	0.2	2 40.2	40.2	-0.2	2 (2	40.2	12 102	40.2	z0.2 z0.2	40.2	2 2	2 <0.2	<0.2	<20			733 0	0	0	0	0	0	0 0	, —	$\overline{}$	- 9.4

Statistical Summary																																																		
Number of Results	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3 3	3	3 3	3	3	3		1	1	3	3	3	3	3	3	3	3	3	3	1	8	1
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0	0	0		1	1	3	3	3	3	3	3	3	3	3	3	1	8	1
Minimum Concentration	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <	<0.2	<0.2 <	<0.2	<0.2	<2	<2 <	<0.2	<0.2	<0.2	<0.2	<0.2	0.2 <	0.2 <0	0.2 <0	.2 <0	0.2 <	:0.2	<20		15	90	568	0	0	0	0	0	0	0	0	0	8.8	3 5.7	16
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D NI	D N	ND N	ND	ND		15	90	568	ND	8.8	3 5.7	16								
Maximum Concentration	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <	<0.2	<0.2 <	<0.2	<0.2	<2	<2 <	<0.2	<0.2	<0.2	<0.2	<0.2	0.2 <	0.2 <0	.2 <0	.2 <0	0.2 <	:0.2	<20		15	90	1029	0	0	0	0	0	0	0	0	0	8.8	8 18	16
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D NI	D N	ND N	ND	ND		15	90	1029	ND	8.8	8 18	16								
Average Concentration	0.1	0.1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1 0.	1 0.	1 0	0.1 0	0.1	10				777	0	0	0	0	0	0	0	0	0		12	
Median Concentration	0.1	0.1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1 0.	1 0.	1 0	0.1 0	0.1	10	\neg	15	90	733	0	0	0	0	0	0	0	0	0	8.8	3 11.	16
Standard Deviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0	0	0				234	0	0	0	0	0	0	0	0	0	1	5	
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table B: Water Analytical Results Project Number: 52680 Project Name: 4 Mitchell Street Enfield PSI

PAHs in Water			N	letals & N	/letalloids					TPHs	(NEPC 1	1999)			Т	RHs (NE	PC 2013	3)	
Benzo(b,j+k)fluoranthene	Arsenic (Total) (Filtered)	Cadmium (Filtered)	Chromium (Total) (Filtered)	Copper (Filtered)	Lead (Filtered)	Mercury (Inorganic) (Filtered)	Nickel (Filtered)	Zinc (Filtered)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Total)	>C10-C16 Fraction	>C16-C34 Fraction	>C34-C40 Fraction	>C10-C16 less Naphthalene (F2)	C6-C10 Fraction	C6-C10 less BTEX (F1)
μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.05	0.10	0.10	0.10	0.05	0.10	0.10	0.05	0.01	0.01
		0.0002	0.001	0.0014	0.0034	0.0006	0.011	0.008											

Field_ID	LocCode	WellCode	Sampled_Date-Time	Lab_Report_Number																				
MW01-01	MW01-01	MW01-01	16-May-17	546369 / 548010 Metals	-	0.001	<0.0002	<0.001	<0.001	0.003	<0.0001	0.006	0.084	<0.02	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.05	<0.02	<0.02
MW02-01	MW02-01	MW02-01	16-May-17	546369 / 548010 Metals	-	0.008	<0.0002	<0.001	0.003	<0.001	<0.0001	0.011	0.015	<0.02	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.05	<0.02	<0.02
MW03-01	MW03-01	MW03-01	16-May-17	546369 / 548010 Metals	-	0.019	<0.0002	<0.001	0.001	<0.001	<0.0001	0.023	0.015	0.05	<0.05	0.9	1.1	2	<0.05	2.3	0.1	<0.05	0.05	0.05
MW04-01	MW04-01	MW04-01	16-May-17	546369 / 548010 Metals	-	<0.001	<0.0002	<0.001	0.001	<0.001	<0.0001	0.002	0.01	<0.02	<0.05	0.5	0.5	1	<0.05	1.1	<0.1	<0.05	<0.02	<0.02
QA1	MW01-01	MW01-01	16-May-17	546369	-	0.002	<0.0002	<0.001	<0.001	<0.001	<0.0001	0.007	<0.005	<0.02	<0.05	0.2	0.2	0.4	<0.05	0.5	<0.1	<0.05	<0.02	<0.02
QC1	MW01-01	MW01-01	16-May-17	167217	<2	0.005	<0.0001	<0.001	<0.001	<0.001	<0.00005	0.005	0.002	<0.01	<0.05	<0.1	<0.1	-	<0.05	<0.1	<0.1	<0.05	<0.01	<0.01

Statistical Summary																				
Number of Results	1	6	6	6	6	6	6	6	6	6	6	6	6	5	6	6	6	6	6	6
Number of Detects	0	5	0	0	3	1	0	6	5	1	0	3	3	3	0	3	1	0	1	1
Minimum Concentration	<2	<0.001	<0.0001	<0.001	<0.001	<0.001	<0.00005	0.002	0.002	<0.01	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.05	<0.01	<0.01
Minimum Detect	ND	0.001	ND	ND	0.001	0.003	ND	0.002	0.002	0.05	ND	0.2	0.2	0.4	ND	0.5	0.1	ND	0.05	0.05
Maximum Concentration	<2	0.019	<0.0002	<0.001	0.003	0.003	<0.0001	0.023	0.084	0.05	<0.05	0.9	1.1	2	<0.05	2.3	0.1	<0.05	0.05	0.05
Maximum Detect	ND	0.019	ND	ND	0.003	0.003	ND	0.023	0.084	0.05	ND	0.9	1.1	2	ND	2.3	0.1	ND	0.05	0.05
Average Concentration		0.0059	0.000092	0.0005	0.0011	0.00092	0.000046	0.009	0.021	0.016	0.025	0.29	0.33	0.7	0.025	0.68	0.058	0.025	0.016	0.016
Median Concentration	1	0.0035	0.0001	0.0005	0.00075	0.0005	0.00005	0.0065	0.0125	0.01	0.025	0.125	0.125	0.4	0.025	0.275	0.05	0.025	0.01	0.01
Standard Deviation		0.007	0.00002	0	0.00097	0.001	0.00001	0.0075	0.031	0.017	0	0.35	0.42	0.82	0	0.9	0.02	0	0.017	0.017
Number of Guideline Exceedances	0	0	0	0	1	0	0	2	4	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	1	0	0	2	4	0	0	0	0	0	0	0	0	0	0	0

Table B: Water Analytical Results
Project Number: 52680
Project Name: 4 Mitchell Street Enfield ESA

JBS&G	izene	ylbenzene	BTI	EX (o) and	ane (m & p)	ene (Total)	naphthene	naphthylene	hracene	ız(a)anthracene	izo(a)pyrene	izo(a)pyrene TEQ (WHO)	ızo(b,j)fluoranthene	ızo(g,h,i)perylene	izo(k)fluoranthene	matic Hy	enz(a,h)anthracene	oranthene	orene	eno(1,2,3-c,d)pyrene	ohthalene	nanthrene	ene	4s (Total)	al Positive PAHs
	Benzer	Ethylb	Toluen	Xylene	Xylene	Xylene	Acenal	Acenal	Anthra	Benz(a	Benzo(Benzo(Benzo(Benzo(Benzo(Chryse	Dibenz	Fluora	Fluore	Indenc	Naphtl	Phena	Pyrene	PAHs (Total P
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZECC 2000 Fresh Water 95%	0.95	0.08	0.18	0.35		0.625															0.016				
·																									

Field_ID	LocCode	WellCode	Sampled_Date-Time	Lab_Report_Number																									
MW01-01	MW01-01	MW01-01	16-May-17	546369 / 548010 Metals	<0.001	<0.001	<0.001	<0.001	<0.002	<0.003	<0.001	<0.001	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
MW02-01	MW02-01	MW02-01	16-May-17	546369 / 548010 Metals	<0.001	<0.001	<0.001	<0.001	<0.002	<0.003	<0.001	<0.001	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<u> </u>
MW03-01	MW03-01	MW03-01	16-May-17	546369 / 548010 Metals	<0.001	<0.001	<0.001	<0.001	<0.002	<0.003	<0.001	<0.001	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-
MW04-01	MW04-01	MW04-01	16-May-17	546369 / 548010 Metals	<0.001	<0.001	<0.001	<0.001	<0.002	<0.003	<0.001	<0.001	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-
QA1	MW01-01	MW01-01	16-May-17	546369	<0.001	<0.001	<0.001	<0.001	<0.002	<0.003	<0.001	<0.001	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-
QC1	QC1	QC1	16-May-17	167217	<0.001	<0.001	<0.001	<0.001	<0.002	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	-	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	- '	0

Statistical Summary																									
Number of Results	6	6	6	6	6	5	6	6	6	6	6	1	5	6	5	6	6	6	6	6	6	6	6	5	1
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Minimum Concentration	<0.001	<0.001	<0.001	<0.001	<0.002	<0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0
Minimum Detect	ND	ND																							
Maximum Concentration	<0.001	<0.001	<0.001	<0.001	<0.002	<0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0
Maximum Detect	ND	ND																							
Average Concentration	0.0005	0.0005	0.0005	0.0005	0.001	0.0015	0.0005	0.0005	0.0005	0.0005	0.0005		0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	
Median Concentration	0.0005	0.0005	0.0005	0.0005	0.001	0.0015	0.0005	0.0005	0.0005	0.0005	0.0005	0.0025	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0
Standard Deviation	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table B: Water Analytical Results

Project Number: 52680

ANZECC 2000 Fresh Water 95%

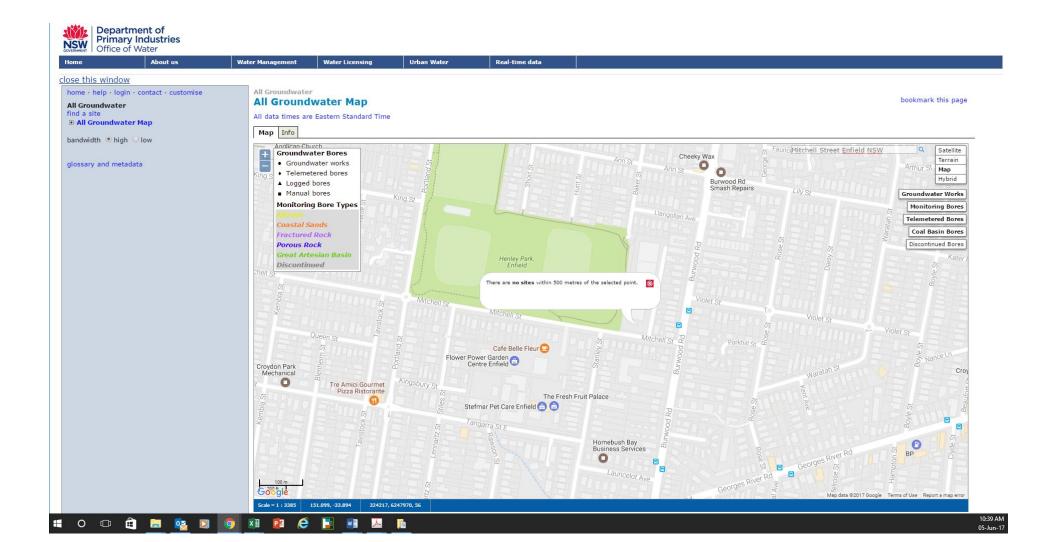
Project Name: 4 Mitchell Street Enfield ESA

									Phe	nols										Organochlorine Pesticides	Herbicides & Fungicides
S&G	2,4,5-trichlorophenol	2,4,6-trichlorophenol	2,4-dichlorophenol	2,4-dimethylphenol	2,4-dinitrophenol	2,6-dichlorophenol	2-chlorophenol	2-Methylphenol	2-nitrophenol	3- & 4-Methylphenol	4,6-Dinitro-2-methylphenol	4,6-Dinitro-o-cyclohexyl phenol	4-Chloro-3-Methylphenol	4-nitrophenol	Phenol	Phenols (Total)	Total Halogenated Phenol	Total Non-Halogenated Phenol	Total Tetrachlorophenols	Pentachlorophenol	Dinoseb
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
·	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.10	0.01	0.00	0.00	0.05	0.01	0.10	0.03	0.01	0.10
		0.02	0.16		0.045		0.49								0.32					0.01	

Field_ID	LocCode	WellCode	Sampled_Date-Time	Lab_Report_Number																					
MW01-01	MW01-01	MW01-01	16-May-17	546369 / 548010 Metals	<0.001	<0.01	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.005	<0.006	<0.005	<0.1	<0.01	<0.001	<0.003	-	<0.01	<0.1	<0.03	<0.01	<0.1
MW02-01	MW02-01	MW02-01	16-May-17	546369 / 548010 Metals	<0.001	<0.01	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.005	<0.006	<0.005	<0.1	<0.01	<0.001	<0.003	-	<0.01	<0.1	<0.03	<0.01	<0.1
MW03-01	MW03-01	MW03-01	16-May-17	546369 / 548010 Metals	<0.001	<0.01	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.005	<0.006	<0.005	<0.1	<0.01	<0.001	<0.003	-	<0.01	<0.1	<0.03	<0.01	<0.1
MW04-01	MW04-01	MW04-01	16-May-17	546369 / 548010 Metals	<0.001	<0.01	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.005	<0.006	<0.005	<0.1	<0.01	<0.001	<0.003	-	<0.01	<0.1	<0.03	<0.01	<0.1
QA1	MW01-01	MW01-01	16-May-17	546369	<0.001	<0.01	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.005	<0.006	<0.005	<0.1	<0.01	<0.001	<0.003	-	<0.01	<0.1	<0.03	<0.01	<0.1
QC1	QC1	QC1	16-May-17	167217	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-		

Statistical Summary Number of Results Number of Detects Minimum Concentration <0.001 <0.001 <0.001 <0.003 <0.005 <0.006 <0.01 <0.001 <0.003 <0.05 <0.03 <0.01 <0.1 <0.01 <0.001 <0.003 <0.003 <0.005 <0.1 <0.01 Minimum Detect ND Maximum Concentration <0.001 <0.001 <0.001 <0.003 <0.003 <0.005 <0.006 <0.005 <0.01 <0.001 <0.05 <0.01 <0.1 <0.03 <0.01 <0.1 <0.01 <0.001 <0.003 <0.1 <0.003 Maximum Detect ND Average Concentration 0.0005 0.005 0.0005 0.0005 0.0005 0.0015 0.0015 0.0015 0.0025 0.003 0.0025 0.05 0.005 0.0005 0.0015 0.005 0.05 0.015 0.005 0.05 Median Concentration 0.025 0.005 0.05 0.015 0.005 0.05 0.0005 0.005 0.0005 0.0015 0.0015 0.003 0.0025 0.05 0.005 0.0005 0.0015 0.0005 0.0005 0.0015 0.0025 Standard Deviation 0 0 Number of Guideline Exceedances 0 Number of Guideline Exceedances(Detects Only) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table C - Groundwater Parameters Results


Job No: 52680

Mitchell Street, Enfield PSI

Well ID	Date Measured	Depth to Water	Dissolved Oxygen	Electrical Conductivit	Redox Potential	рН	Temperatu re	Comments
			,0	у				
		m bgs	(ppm)	(mS/cm)	(mV)		(°C)	
Groundwate	er Monitorin	g						
MW01	16-05-17	1.038	1.72	5	369	6.55	22.1	Brown, turbid, no odour, no sheen
MW02	16-05-17	5.545	2.41	8	145	6.89	18.8	Brown, turbid, no odour, no sheen
MW03	16-05-17	7.720	2.72	10	-4	6.92	19.1	Brown, turbid, no odour, no sheen
MW04	16-05-17	4.059	3.10	8	149	6.86	19.0	Brown, turbid, no odour, no sheen

Appendix A: Office of Water Bore Search

Appendix B: EPA Records

Keyword Search

Go

Healthy Environment, Healthy Community, Healthy Business

Homo

Protecting your

For business

About the NSW Media and

Search Again Refine Search

Search TIP

listed

To search for a specific site, search by LGA (local

government area) and

carefully review all sites

more search tips

Contact us

Contaminated land + Management of contaminated land + Consultants and site auditor scheme + Underground petroleum storage systems Guidelines under the CLM Act NEPM amendment + Further guidance - Record of notices About the record Search the record Search tips Disclaimer List of NSW contaminated sites notified to EPA Frequently asked questions Forms + Other contamination issues + Contaminated Land Management Program

Home Contaminated land Record of notices

Search results

Your search for: Suburb: ENFIELD

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
- . Contamination at the site may be being managed under the planning process.

More information about particular sites may be available from:

- . The POEO public register
- The appropriate planning authority: for example, on a planning certificate issued by the local council under <u>section 149 of the Environmental Planning and Assessment Act</u>.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed. This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including

This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register®

5 June 2017

Number	Name	Location	Туре	Status	Issued date
12241	ELG RECYCLING PROCESSORS PTY. LTD.	70 Cosgrove Road, ENFIELD, NSW 2136	POEO licence	No longer in force	27-Jan-05
		From the existing rail network at Glenfield			
13425	JOHN HOLLAND PTY LTD	west to Rossmore., GLENFIELD, NSW 2167	POEO licence	Surrendered	04-Aug-11
4614	L.A. KENNETT ENTERPRISES PTY LTD	CAMBRIDGE AVE, GLENFIELD, NSW 2167	POEO licence	Issued	12-Apr-01
		94-98 COSGROVE ROAD, ENFIELD, NSW			
6003	ORORA LIMITED	2136	POEO licence	Surrendered	28-Apr-00

List of NSW Contaminated Sites Notified to EPA as of 8 May 2017

Background

A strategy to systematically assess, prioritise and respond to notifications under Section 60 of the *Contaminated Land Management Act 1997* (CLM Act) has been developed by the EPA. This strategy acknowledges the EPA's obligations to make information available to the public under *Government Information (Public Access) Act 2009*.

When a site is notified to the EPA, it may be accompanied by detailed site reports where the owner has been proactive in addressing the contamination and its source. However, often there is minimal information on the nature or extent of the contamination.

For some notifications, the information indicates the contamination is securely immobilised within the site, such as under a building or carpark, and is not currently causing any offsite consequences to the community or environment. Such sites would still need to be cleaned up, but this could be done in conjunction with any subsequent building or redevelopment of the land. These sites may not require intervention under the CLM Act, but could be dealt with through the planning and development consent process.

Where indications are that the nominated site is causing actual harm to the environment or an unacceptable offsite impact (i.e. it is a "significantly contaminated site"), the EPA would apply the regulatory provisions of the CLM Act to have the responsible polluter and/or landowner investigate and remediate the site.

As such, the sites notified to the EPA and presented in the following table are at various stages of the assessment and/or remediation process. Understanding the nature of the underlying contamination, its implications and implementing a remediation program where required, can take a considerable period of time. The tables provide an indication, in relation to each nominated site, as to the management status of that particular site. Further detailed information may be available from the EPA or the responsible landowner.

The following questions and answers may assist those interested in this issue:

Frequently asked questions

What is the difference between the "List of NSW Contaminated Sites Notified to the EPA" and the "Contaminated Land: Record of Notices"?

A site will be on the <u>Contaminated Land: Record of Notices</u> only if the EPA has issued a regulatory notice in relation to the site under the <u>Contaminated Land Management Act 1997</u>.

The sites appearing on this "List of NSW contaminated sites notified to the EPA" indicate that the notifiers consider that the sites are contaminated and warrant reporting to the EPA. However, the contamination may or may not be significant enough to warrant regulation by the EPA. The EPA needs to review and, if necessary, obtain more information before it can make a determination as to whether the site warrants regulation.

Why my site appears on the list?

Your site appears on the list because of one or more of the following reasons:

- The site owner and/or the person partly or fully responsible for causing the contamination notified to the EPA about the contamination under Section 60 of the Contaminated Land Management Act 1997. In other words, the site owner or the "polluter" believes the site is contaminated.
- The EPA has been notified via other means and is satisfied that the site is or was contaminated.

Does the list contain all contaminated sites in NSW?

No. The list only contains contaminated sites that the EPA is aware of, with regard to its regulatory role under the CLM Act. An absence of a site from the list does not necessarily imply the site is not contaminated.

The EPA relies upon responsible parties to notify contaminated sites.

How are these notified contaminated sites managed by the EPA?

There are different ways that the EPA manages these notified contaminated sites. First, an initial assessment is carried out by the EPA. At the completion of the initial assessment, the EPA may take one or more than one of the following management approaches:

- The contamination warrants the EPA's direct regulatory intervention either under the Contaminated Land Management Act 1997 or the Protection of the Environment Operations Act 1997 (POEO Act), or both. Information about current or past regulatory action on this site can be found on EPA website.
- The contamination with respect to the current use or approved use of the site, as defined under the *Contaminated Land Management Act 1997*, is not significant enough that it warrants EPA regulation.
- The contamination does not require EPA regulation and can be managed by a planning approval process.
- The contamination is related to an operational Underground Petroleum Storage System, such as a service station or fuel depot. The contamination may be managed under the POEO Act and the Protection of the Environment Operation (Underground Petroleum Storage Systems) Regulation 2008.
- The contamination is being managed under a specifically tailored program operated by another agency (for example the Department of Industry and Investment's *Derelict Mines Program*).

I am the owner of a site that appears on the list. What should I do?

First of all, you should ensure the current use of the site is compatible with the site contamination. Secondly, if the site is the subject of EPA regulation, make sure you comply with the regulatory requirements, and you have considered your obligations to notify other parties who may be affected.

If you have any concerns, contact us and we may be able to offer you general advice, or direct you to accredited professionals who can assist with specific issues.

I am a prospective buyer of a site that appears on the list. What should I do?

You should seek advice from the vendor to put the contamination issue into perspective. You may need to seek independent expert advice.

The information provided in the list is meant to be indicative only, and a starting point for your own assessment. Site contamination as a legacy of past site uses is not uncommon,

particularly in an urbanised environment. If the contamination on a site is properly remediated or managed, it may not materially impact upon the intended future use of the site. However, each site needs to be considered in context.

List of NSW Contaminated Sites Notified to the EPA

Disclaimer

The EPA has taken all reasonable care to ensure that the information in the list of contaminated sites notified to the EPA (the list) is complete and correct. The EPA does not, however, warrant or represent that the list is free from errors or omissions or that it is exhaustive.

The EPA may, without notice, change any or all of the information in the list at any time.

You should obtain independent advice before you make any decision based on the information in the list.

The list is made available on the understanding that the EPA, its servants and agents, to the extent permitted by law, accept no responsibility for any damage, cost, loss or expense incurred by you as a result of:

- 1. any information in the list; or
- 2. any error, omission or misrepresentation in the list; or
- 3. any malfunction or failure to function of the list;
- 4. without limiting (2) or (3) above, any delay, failure or error in recording, displaying or updating information.

Site Status	Explanation
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or <i>Protection of the Environment Operations Act 1997</i> . Alternatively, the EPA may require information via a notice issued under s77 of the <i>Contaminated Land Management Act 1997</i> or issue a Preliminary Investigation Order.
Regulation under CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the <i>Contaminated Land Management Act 1997</i> is not required.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the <i>Contaminated Land Management Act 1997</i> . A regulatory approach is being finalised.

Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record.
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the <i>Environmental Planning and Assessment Act 1979</i> (EP&A Act).
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the <i>Protection of the Environment Operations Act 1997</i> (POEO Act).
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the <i>Contaminated Land Management Act 1997</i> (CLM Act). The contamination was addressed under the CLM Act.
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the <i>Environmental Planning and Assessment Act 1979</i> (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the <i>Protection of the Environment Operations Act 1997</i> (POEO Act). The EPA's regulatory actions under the POEO Act are available on the <u>POEO public register</u> .
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the <i>Contaminated Land Management Act 1997</i> (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record.

Suburb	Site Name	Site Address	Contamination Activity Type	EPA Management Class	Latitude	Longitude
	Former Frozen Food Distribution			Contamination currently regulated		
ERINA	Depot	1 Aston ROAD	Other Petroleum	under CLM Act	-33.434878	151.3845431
				Regulation under CLM Act not		
ERINA	Caltex Service Station	155 The Entrance ROAD	Service Station	required	-33.43824871	151.3801096
				Regulation under CLM Act not		
ERINA	Coles Express Service Station Erina	211 The Entrance ROAD	Service Station	required	-33.43547804	151.3850522
				Regulation under CLM Act not		
ERINA	7-Eleven Erina	214 The Entrance ROAD	Service Station	required	-33.43494257	151.3879511
				Regulation under CLM Act not		
ERINA	7-Eleven Service Station	96 The Entrance ROAD	Service Station	required	-33.43786868	151.3729331
ERMINGTON	Caltex Service Station	562 Victoria ROAD	Service Station	Under assessment	-33.81392814	151.0547543
ERSKINE PARK	Western Sydney Service Centre	25-55 Templar ROAD	Landfill	Under assessment	-33.81897822	150.7937394
ERSKINEVILLE	Redevelopment Site	36/1A Coulson STREET	Unclassified	Under assessment	-33.90325501	151.1855668
				Regulation under CLM Act not		
ERSKINEVILLE	Department of Housing	52 John STREET	Other Industry	required	-33.8982925	151.1840284
ERSKINEVILLE	RailCorp land	Coulson STREET	Other Industry	Under assessment	-33.90279502	151.1846827
	BP Euabalong West Depot (Reliance	Corner Illawong Street and Murrin				
EUABALONG WEST	Petroleum)	STREET	Other Petroleum	Under assessment	-33.05720426	146.3946386
	·	Bounded by Currajong, Woodburn,				
		Carrabeen Streets and Tuckeroo		Regulation under CLM Act not		
EVANS HEAD	Evans Head Residential subdivision	CRESCENT	Unclassified	required	-29.1080969	153.4243577
-				Regulation under CLM Act not		
EVANS HEAD	Evans Head Aerodrome	Memorial Airport DRIVE	Other Industry	required	-29.10389976	153.4216791
EVANS HEAD	Bundjalung National Park	The Gap ROAD	Unclassified	Under assessment	-29.24433977	153.3626472
EVELEIGH	Macdonaldtown Triangle	Burren STREET	Gasworks	Contamination being managed via the planning process (EP&A Act)	-33.89803492	151.186059
EVELEIGH.	A study Task sales Bad	Hardens BOAD		Regulation under CLM Act not	22 00524425	454 4044045
EVELEIGH	Australian Technology Park	Henderson ROAD	Other Industry	required	-33.89634136	151.1944915
	Endeavour Energy Fairfield Zone			Regulation under CLM Act not	22 2512221	450 0555000
FAIRFIELD	Substation	22 Hedges STREET	Other Industry	required	-33.86133019	150.9555899
FAIRFIELD	Speedway Petroleum	251 The Horsley DRIVE	Service Station	Under assessment	-33.8711661	150.9630077
		234 Hamilton (Cnr The Boulevarde)				
FAIRFIELD HEIGHTS	7-Eleven Fairfield Heights	ROAD	Service Station	Under assessment	-33.87208474	150.9373134
	Caltex Fuel Depot and adjoining			Contamination formerly regulated		
FAIRY MEADOW	land	46 Montague STREET	Service Station	under the CLM Act	-34.40050499	150.8953125
				Regulation under CLM Act not		
FAIRY MEADOW	Woolworths Petrol Service Station	49 Princes HIGHWAY	Service Station	required	-34.39399705	150.8925369
				Regulation under CLM Act not		
FAIRY MEADOW	Deynal (Seeman)	51-59 Princes HIGHWAY	Service Station	required	-34.39437085	150.8924666
	Farley Waste Water Treatment					
FARLEY	Works	Owl Pen LANE	Other Industry	Under assessment	-32.74431314	151.5194217
FASSIFERN	Former Arsenic Smelter	Fassifern ROAD	Other Industry	Under assessment	-32.99649819	151.5618283
FASSIFERN	Newstan Colliery	Fassifern ROAD	Other Industry	Under assessment	-32.97942521	151.5660046
FEDERAL	Federal General Store	3-6 Federal DRIVE	Service Station	Contamination currently regulated under CLM Act	-28.65190728	153.4552976
FERN BAY	Former service station	37 Fullerton (1006 Nelson Bay Road) STREET	Service Station	Under assessment	-32.87245004	151.7939904
FIVE DOCK	7-Eleven Service Station	231-235 Great North ROAD	Service Station	Under assessment	-33.86488376	151.130002

List current as of 8 May 2017 Page 22 of 63

Appendix C: Logs

Project Number: 52680

Client: Tian An Enfield Pty Ltd

Project Name: Mitchell St Enfield PSI

Site Address: 4 Mitchell Street Enfield

Date: 1/05/2017 Eastings (GDA 94):
Logged By: NW Northings (GDA 94):
Contractor: Develop Partners

Zens/Area:

Contractor: Douglas Partners Zone/Area: -

Total Hole Depth (mbgs): 2 **Reference Level:** Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Solid Flight Auger	-	0.05		Fill Fill	Asphalt Fill: Roadbase, gravelly sand, grey - brown	BH01-0.1-0.2 PID = 2.1 ppm	No asbestos odour or staining
Solic	0.5	0.30		Fill	Fill: Clayey silt, brown, soft, non-plastic - low plasticity, dry, heterogeneous, with sand	BH01-0.3-0.4 PID = 1.6 ppm BH01-0.4-0.5 PID = 1.4 ppm	No asbestos odour or staining No asbestos odour or staining
	- - 1.0	0.70		CL	Clay, grey mottled red, medium - low plasticity, firm, dry, homogeneous, trace ironstone.	BH01-0.9-1.0 PID = 0.2 ppm	No asbestos odour or staining
	- -	1.20		SHALE	Weathered siltsone, grey brown		
	1 <u>.5</u>					BH01-1.4-1.5 PID = 0.4 ppm	No asbestos odour or staining
	_ _ _ 2.0					BH01-1.9-2.0 PID = 0.2 ppm	No asbestos odour or staining End of investigation at target depth 2.0 mbg natural. Douglas Partners continued to 6.0 r
	- -	2.00			Borehole BH01 terminated at 2m		hatural. Douglas Partners continued to 6.0 r
	_ 2 <u>.5</u> _						
	3.0						
	_ _ _						
	3 <u>.5</u>						
	- - 4.0						
	- -						
	4.5						

BOREHOLE JBSG BOREHOLE.GPJ GINT STD AUSTRALIA.GDT 5/6/17

BH02

Project Number: 52680

Client: Tian An Enfield Pty Ltd

Project Name: Mitchell St Enfield PSI

Site Address: 4 Mitchell Street Enfield

Date:1/05/2017Eastings (GDA 94):Logged By:NWNorthings (GDA 94):Contractor:Douglas PartnersZone/Area: -

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

				,	()		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Solid Flight Auger		0.05		Fill Fill	Asphalt Fill: Roadbase, gravelly sand, grey - brown	BH02-0.1-0.2 PID = 1.7 ppm	No asbestos odour or staining
Solid Flig	_					BH02-0.3-0.4 PID = 1.4 ppm BH02-0.4-0.5 PID = 1.8 ppm	No asbestos odour or staining
	0 <u>.5</u>	0.40		Fill	Fill: Gravelly clay, pale brown, low plasticity, firm, heterogeneous, dry, with sand	BH02-0.4-0.5 PID = 1.8 ppm	No asbestos odour or staining
	_	0.60		SHALE	Weathered siltsone, grey brown with ironstone bands		
	1.0					BH02-0.9-1.0 PID = 1.2 ppm	No asbestos odour or staining
	_						End of investigation at target depth 1.2 m bgs in natural. Douglas Partners continued to 6.0 m
	_	1.20			Borehole BH02 terminated at 1.2m		in natural. Douglas Partners continued to 6.0 m bgs
	1 <u>.5</u>						
	_						
	2.0						
	_						
	_						
	2.5						
	_						
	3.0						
	_						
	_						
	3 <u>.5</u>						
	_						
	4 <u>.0</u>						
	- -						
	- -						
L	4.5						

Project Number: 52680

Client: Tian An Enfield Pty Ltd

Project Name: Mitchell St Enfield PSI

Site Address: 4 Mitchell Street Enfield

Date:1/05/2017Eastings (GDA 94):Logged By:NWNorthings (GDA 94):Contractor:Douglas PartnersZone/Area: -

Total Hole Depth (mbgs): 4 Reference Level: Ground Surface

		umoto	er (mm	·/·	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
nt Auger	_			Fill	Fill: Sandy silt, dark brown, soft, non plastic, fine grained, heterogeneous, dry with organic matter	BH03-0.0-0.1 PID = 3.4 ppm	No asbestos odour or staining
Solid Flight Auger	-	0.20		Fill	Fill: Silty sand, brown, fine grained, well sorted, medium dense, dry, heterogeneous, with sandstone cobbles	BH03-0.2-0.3 PID = 2.1 ppm	No asbestos odour or staining
3	0 <u>.5</u>					BH03-0.4-0.5 PID = 2.1 ppm	No asbestos odour or staining
	- -	0.70		Fill	Fill / reworked natural: Silty clay, pale brown, low plasticity, firm, heterogeneous, dry, with gravel, trace sand	BH03-0.9-1.0	No asbestos odour or staining
	1 <u>.0</u>	1.20		CL	Clay, grey mottled red, medium - low plasticity, firm, dry, homogeneous, trace	PID = 1.1 ppm	
	1 <u>.5</u>	20		52	ironstone	BH03-1.4-1.5 PID = 0.6 ppm	No asbestos odour or staining
	- -	1.70		SHALE	Weathered siltsone, grey brown with ironstone bands	BH03-1.9-2.0	No asbestos odour or staining
	2 <u>.0</u> _					PID = 0.4 ppm	
	2 <u>.5</u>						
	- - -						
	3 <u>.0</u>						
	- - -						
	3 <u>.5</u> _ _						
	4.0	4.00			Borehole BH03 terminated at 4m		End of hole at 4.0 m bgs in natural, at refusal
	- - -	4.00			Social Strot terminated at 411		on weathered rock.

Project Number: 52680

Client: Tian An Enfield Pty Ltd

Project Name: Mitchell St Enfield PSI

Site Address: 4 Mitchell Street Enfield

Date:1/05/2017Eastings (GDA 94):Logged By:NWNorthings (GDA 94):Contractor:Douglas PartnersZone/Area: -

Total Hole Depth (mbgs): 1.3 Reference Level: Ground Surface

r Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Solid Flight Auger	-	0.05		Fill Fill	Asphalt Fill: Roadbase, gravelly sand, grey - brown	BH04-0.1-0.2 PID = 0.4 ppm	No asbestos odour or staining
Solid	0.5	0.30		Fill	Fill: Gravelly clay, brown mottled orange, medium plasticity, firm, heterogeneous, dry, with sand	BH04-0.4-0.5 PID = 0.7 ppm	QC1 and QA1 taken. No asbestos odour or staining
	1 <u>.0</u>	0.80		CL	Clay, red mottled grey, medium plasticity, firm, homogeneous, dry, lense of weathered siltstone at 1.2 m bgs	BH04-0.9-1.0 PID = 0.3 ppm	No asbestos odour or staining
	_	1.30			Borehole BH04 terminated at 1.3m		End of investigation at target depth 1.3 m bgs in natural. Douglas Partners continued to 6.0 bgs
	1 <u>.5</u>						
	_						
	2 <u>.0</u>						
	- -						
	2.5						
	_						
	3.0						
	-						
	3.5						
	_						
	-						
	4.0						
	-						

Project Number: 52680

Client: Tian An Enfield Pty Ltd

Project Name: Mitchell St Enfield PSI

Site Address: 4 Mitchell Street Enfield

Date:1/05/2017Eastings (GDA 94):Logged By:NWNorthings (GDA 94):Contractor:Douglas PartnersZone/Area: -

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

						T	
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Solid Flight Auger	-	0.05		Fill Fill	Asphalt Fill: Roadbase, gravelly sand, brown, with sandstone cobbles	BH05-0.1-0.2 PID = 1.9 ppm	No asbestos odour or staining
Solid F	0.5	0.30		Fill	Fill: Weathered sandstone, pale brown, medium grained, loose	BH05-0.3-0.4 PID = 0.4 ppm BH05-0.4-0.5 PID = 0.2 ppm	No asbestos odour or staining No asbestos odour or staining
	1 <u>.0</u>	0.70		CL	Clay, brown mottled red, low plasticity, firm, homogeneous, dry, trace ironstone gravels	BH05-0.9-1.0 PID = 0 ppm	No asbestos odour or staining
	1 <u>.5</u>					BH05-1.4-1.5 PID = 1.6 ppm	No asbestos odour or staining
	2.0	1.90		SHALE	Weathered siltsone, grey brown with ironstone bands Borehole BH05 terminated at 2m		End of investigation at target depth 2.0 m bgs in natural. Douglas Partners continued to 6.0
	2.5 3.0 3.5 4.0						bgs

Project Number: 52680

Client: Tian An Enfield Pty Ltd

Project Name: Mitchell St Enfield PSI

Site Address: 4 Mitchell Street Enfield

Date: 1/05/2017 **Logged By:** NW

Eastings (GDA 94): Northings (GDA 94): Zone/Area: -

Contractor: Douglas Partners **Total Hole Depth (mbgs):** 1.5

Reference Level: Ground Surface

Bore Diameter (mm):

Elevation (m):

Semptice. Trades Reconstant Processing Proce	<u> </u>							
Fill Fill Roadbase, gravelly sand, grey - brown Pill Fill Roadbase, gravelly sand, grey - brown Pill Pill	Method	Depth (mbgs)	Contact (mbgs)	Graphic Log			Tests	Additional Observations
	BOREHOLE JBSG BOREHOLE.GPJ GINT STD AUSTRALIA.GDT 5/6/17 Solid Flight Auger	1.0 1.0 1.5 2.0 3.0 4.0	1.10		Fill Fill	Fill: Roadbase, gravelly sand, grey - brown Fill: Gravelly sandy clay, red mottled brown, medium plasticity, firm, dry, heterogeneous Clay, grey mottled red, medium - low plasticity, hard, dry, homogeneous, trace ironstone	BH06-0.4-0.5 PID = 0.3 ppm	No asbestos odour or staining No asbestos odour or staining No asbestos odour or staining End of investigation at target depth 1.5 m bgs in natural. Douglas Partners continued to 6.0 m

Project Number: 52680

Client: Tian An Enfield Pty Ltd

Project Name: Mitchell St Enfield PSI

Site Address: 4 Mitchell Street Enfield

Date: 1/05/2017 Logged By: NW

Contractor: Not applicable Zone/Area: -

Total Hole Depth (mbgs): 0.7 Bore Diameter (mm): 100 Reference Level: Ground Surface

Elevation (m):

Eastings (GDA 94):

Northings (GDA 94):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-			Fill	Fill: Sandy silt, dark brown, soft, non-plastic, fine grained, heterogeneous, dry with gravels	BH07-0.0-0.1 PID = 2.7 ppm	No asbestos odour or staining
Har		0.20		Fill	Fill: Gravelly silty clay, brown, medium plasticity, firm, heterogeneous, dry, with sandstone and igneous gravels	BH07-0.2-0.3 PID = 2.3 ppm	No asbestos odour or staining
	0 <u>.5</u>	0.40		CL	Clay, brown mottled red, medium plasticity, firm, homogeneous, dry, trace igneous gravels		
	_	0.70			Borehole BH07 terminated at 0.7m	BH07-0.6-0.7 PID = 1.5 ppm	No asbestos odour or staining End of hole at target depth 0.7 m bgs in natural.
	_						
	1 <u>.0</u>						
	_						
	_						
	1 <u>.5</u> –						
	_ _						
	2 <u>.0</u>						
	_						
	_						
	2.5						
	_ _						
	_						
	3.0						
	_						
	_						
	3 <u>.5</u>						
	4.0						
	-						
	- 4 <u>.5</u>						

Project Number: 52680

Client: Tian An Enfield Pty Ltd

Project Name: Mitchell St Enfield PSI

Site Address: 4 Mitchell Street Enfield

Date:1/05/2017Eastings (GDA 94):Logged By:NWNorthings (GDA 94):Contractor:Not applicableZone/Area: -

Total Hole Depth (mbgs): 1 Reference Level: Ground Surface

Method	Depth (mbgs) Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	0 <u>.5</u>		Fill	Fill: Sandy silt, dark brown, soft, non-plastic, fine grained, heterogeneous, dry with organic matter, trace cobbles	BH08-0.0-0.1 PID = 6.4 ppm BH08-0.2-0.3 PID = 4.4 ppm BH08-0.4-0.5 PID = 2.1 ppm	No asbestos odour or staining No asbestos odour or staining No asbestos odour or staining
	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		CL	Clay, red mottled grey, medium plasticity, firm, homogeneous, dry - moist Borehole BH08 terminated at 1m	BH08-0.9-1.0 PID = 1.4 ppm	No asbestos odour or staining End of hole at target depth 1.0 m bgs in natural.

Project Number: 52680

Client: Tian An Enfield Pty Ltd

Project Name: Mitchell St Enfield PSI

Site Address: 4 Mitchell Street Enfield

Date: 1/05/2017 **Logged By:** NW

Eastings (GDA 94): Northings (GDA 94): Zone/Area: -

Contractor: Not applicable **Total Hole Depth (mbgs):** 0.7

Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	0.5	0.20		Fill	Fill: Sandy silt, dark brown, soft, non-plastic, fine grained, heterogeneous, dry with organic matter Fill: Gravelly sand, brown, medium grained, well sorted, medium dense, heterogeneous, dry	BH09-0.0-0.1 PID = 0.7 ppm BH09-0.3-0.4 PID = 0.3 ppm BH09-0.4-0.5 PID = 0.2 ppm	No asbestos odour or staining No asbestos odour or staining No asbestos odour or staining
	1.0 - 1.5 	0.70			Borehole BH09 terminated at 0.7m		End of hole at 0.7 m bgs due to refusal on tre roots and gravel.

Project Number: 52680

Client: Tian An Enfield Pty Ltd

Project Name: Mitchell St Enfield PSI

Site Address: 4 Mitchell Street Enfield

Date:1/05/2017Eastings (GDA 94):Logged By:NWNorthings (GDA 94):Contractor:Not applicableZone/Area: -

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

Method	Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger M	0.30 Fill	Fill: Gravelly sandy silt, brown, soft, non-plastic, heterogeneous, dry Borehole BH10 terminated at 0.3m	BH10-0.0-0.1 PID = 0.6 ppm	No asbestos odour or staining End of hole at 0.3 m bgs in fill due to drill rig commencement.

Appendix D: Laboratory Certificates and COC Documentation

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

166044

CERTIFICATE OF ANALYSIS

Client:

JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St Sydney NSW 2000

Attention: S Molinari, N Wells

Sample log in details:

Your Reference: 52680, Mitchell St, Enfield DSI

No. of samples: 1 Soil

01/05/17 Date samples received / completed instructions received 01/05/17

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 8/05/17 5/05/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing Tests not covered by NATA are denoted with *.

Results Approved By:

General Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	166044-1
Your Reference		QC1
	-	
Date Sampled		28/04/2017
Type of sample		Soil
Date extracted	-	02/05/2017
Date analysed	-	04/05/2017
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	100

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	166044-1
Your Reference		QC1
	-	
Date Sampled		28/04/2017
Type of sample		Soil
Date extracted	-	02/05/2017
Date analysed	-	03/05/2017
TRHC10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Total+veTRH(>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	86

Acid Extractable metals in soil		
Our Reference:	UNITS	166044-1
Your Reference		QC1
	-	
Date Sampled		28/04/2017
Type of sample		Soil
Date prepared	-	02/05/2017
Date analysed	-	02/05/2017
Arsenic	mg/kg	6
Cadmium	mg/kg	<0.4
Chromium	mg/kg	21
Copper	mg/kg	24
Lead	mg/kg	12
Mercury	mg/kg	<0.1
Nickel	mg/kg	25
Zinc	mg/kg	32

Moisture		
Our Reference:	UNITS	166044-1
Your Reference		QC1
	-	
Date Sampled		28/04/2017
Type of sample		Soil
Date prepared	-	2/05/2017
Data analysis d	_	3/05/2017
Date analysed	-	3/03/2017

Envirolab Reference: 166044

Revision No: R 00

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater
	(HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.

Client Reference: 52680, Mitchell St, Enfield DSI

		00	nt Referenc	C. 32	.000, WIIICHE	I St, Enfield DSI		
QUALITYCONTROL	JNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		
Date extracted	-			02/05/2 017	[NT]	[NT]	LCS-2	02/05/2017
Date analysed	-			04/05/2 017	[NT]	[NT]	LCS-2	04/05/2017
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-2	88%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-2	88%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-2	97%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-2	80%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-2	85%
m+p-xylene	mg/kg	2	Org-016	<2	[NT]	[NT]	LCS-2	89%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-2	87%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	110	[NT]	[NT]	LCS-2	111%
QUALITYCONTROL L	JNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II %RPD		
Date extracted	-			02/05/2 017	[NT]	[NT]	LCS-2	02/05/2017
Date analysed	-			02/05/2 017	[NT]	[NT]	LCS-2	02/05/2017
TRHC10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-2	106%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	101%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	91%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-2	106%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	101%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	91%
Surrogate o-Terphenyl	%		Org-003	94	[NT]	[NT]	LCS-2	119%
QUALITY CONTROL L	JNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Acid Extractable metals in soil					Sm#	Base II Duplicate II %RPD		Recovery
Date prepared	-			02/05/2 017	[NT]	[NT]	LCS-2	02/05/2017
Date analysed	-			02/05/2 017	[NT]	[NT]	LCS-2	02/05/2017
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]	LCS-2	109%
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]	LCS-2	101%
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-2	105%
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-2	107%
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-2	105%
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	LCS-2	104%
		1	1	i			1	1
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-2	96%

Client Reference: 52680, Mitchell St, Enfield DSI

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

Envirolab Reference: 166044

Revision No: R 00

Page 8 of 9

Client Reference: 52680, Mitchell St, Enfield DSI

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 166044 Page 9 of 9

Revision No: R 00

CHAIN OF CUSTODY

1	7	
	7	
	1	
	P	
Y		P

				@jbsg.com.au	ASBEST AND AND AND AND AND AND AND AND AND AND				Envir	Ch			12.0	Received by: Dw	Gooling: techlososek (O. 6	Security: Intact/Broken/None		FOR RECEIVING LAB USE ONLY:	COOLER SEAL – Yes No Intact Broken	COOLER TEMP deg C	COOLER SEAL – Yes No Intact Broken	DF: COOLER TEMP deg C
LABORATORY BATCH NO.:	SAMPLERS: NWELL	QC LEVEL: NEPM (2013)		Mells	HIM POLPS	118 118 118 118 118 118 118 118 118 118	X		ENVIROLAB	sco	JOD NO.	Date Re	Ime Re	Jemo-Cara	Coolings	Security:		RECEIVED BY:	DATE: 1/5/17 12:00		NAME: DATE:	
	eld DSI		488 0100 Brisbane: 07 3112 2688	@jbsg.com.au; (2) S. I'M of @jbsg.com.au; (3)		DATE TIME TYPE & PRESERVATIVE PH	28.4 Jar + bay 114											METHOD OF SHIPMENT:	CONSIGNMENT NOTE NO.	TRANSPORT CO.	CONSIGNMENT NOTE NO.	TRANSPORT CO
PROJECT NO.: 52680	PROJECT NAME: MITCHEIL ST ENFEIG	DATE NEEDED BY: Ad MT	PHONE: Sydney: 02 8245 0300 Perth: 08 9488 0100 Brisbane: 07 3112 2688	SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)	COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	SAMPLE ID MATRIX D	QC1 50,1 28											RELINQUISHED BY:	NAME: NYW II) DATE: 1/5/17		NAME: DATE:	OF:

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

167217

Client:

JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St Sydney NSW 2000

Attention: N Wells

Sample log in details:

Your Reference: 52680, Enfield DD

No. of samples: 1 Water

Date samples received / completed instructions received 16/05/2017 / 16/05/2017

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 23/05/17 / 22/05/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

vTRH(C6-C10)/BTEXNinWater		
Our Reference:	UNITS	167217-1
Your Reference		QC1
	-	
Date Sampled		16/05/2017
Type of sample		Water
Date extracted	-	17/05/2017
Date analysed	-	18/05/2017
TRHC6 - C9	μg/L	<10
TRHC6 - C10	μg/L	<10
TRHC6 - C10 less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	103
Surrogate toluene-d8	%	97
Surrogate 4-BFB	%	110

svTRH (C10-C40) in Water		
Our Reference:	UNITS	167217-1
Your Reference		QC1
	-	
Date Sampled		16/05/2017
Type of sample		Water
Date extracted	-	18/05/2017
Date analysed	-	19/05/2017
TRHC10 - C14	μg/L	<50
TRHC 15 - C28	μg/L	<100
TRHC29 - C36	μg/L	<100
TRH>C10 - C16	μg/L	<50
TRH>C10 - C16 less Naphthalene (F2)	μg/L	<50
TRH>C16 - C34	μg/L	<100
TRH>C34 - C40	μg/L	<100
Surrogate o-Terphenyl	%	77

	ı	
PAHs in Water		
Our Reference:	UNITS	167217-1
Your Reference		QC1
5.0	-	40/05/0045
Date Sampled		16/05/2017
Type of sample		Water
Date extracted	-	18/05/2017
Date analysed	-	19/05/2017
Naphthalene	μg/L	<1
Acenaphthylene	μg/L	<1
Acenaphthene	μg/L	<1
Fluorene	μg/L	<1
Phenanthrene	μg/L	<1
Anthracene	μg/L	<1
Fluoranthene	μg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	μg/L	<1
Benzo(b,j+k)fluoranthene	μg/L	<2
Benzo(a)pyrene	μg/L	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1
Dibenzo(a,h)anthracene	μg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Benzo(a)pyrene TEQ	μg/L	<5
Total +ve PAH's	μg/L	NIL(+)VE
Surrogate p-Terphenyl-d14	%	122

Total Phenolics in Water		
Our Reference:	UNITS	167217-1
Your Reference		QC1
	-	
Date Sampled		16/05/2017
Type of sample		Water
Date extracted	-	17/05/2017
Date analysed	-	17/05/2017
_ = = = = = = = = = = = = = = = = = = =		

Envirolab Reference: 167217

Revision No: R 00

HM in water - dissolved		
Our Reference:	UNITS	167217-1
Your Reference		QC1
	-	
Date Sampled		16/05/2017
Type of sample		Water
Date prepared	-	18/05/2017
Date analysed	-	18/05/2017
Arsenic-Dissolved	μg/L	5
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	μg/L	<1
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	μg/L	<0.05
Nickel-Dissolved	μg/L	5
Zinc-Dissolved	μg/L	2

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-022	Determination of various metals by ICP-MS.
Metals-021	Determination of Mercury by Cold Vapour AAS.

		Cile	nt Referenc	e. 52	680, Enfield	טט		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II %RPD		
Date extracted	-			17/05/2 017	[NT]	[NT]	LCS-W1	17/05/2017
Date analysed	-			18/05/2 017	[NT]	[NT]	LCS-W1	18/05/2017
TRHC6 - C9	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	98%
TRHC6 - C10	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	98%
Benzene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	89%
Toluene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	95%
Ethylbenzene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	98%
m+p-xylene	μg/L	2	Org-016	<2	[NT]	[NT]	LCS-W1	104%
o-xylene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	104%
Naphthalene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		Org-016	106	[NT]	[NT]	LCS-W1	89%
Surrogate toluene-d8	%		Org-016	97	[NT]	[NT]	LCS-W1	105%
Surrogate 4-BFB	%		Org-016	100	[NT]	[NT]	LCS-W1	110%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Water						Base II Duplicate II %RPD		
Date extracted	-			18/05/2 017	[NT]	[NT]	LCS-W1	18/05/2017
Date analysed	-			18/05/2 017	[NT]	[NT]	LCS-W1	18/05/2017
TRHC10 - C14	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	98%
TRHC 15 - C28	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	101%
TRHC29 - C36	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	84%
TRH>C10 - C16	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	98%
TRH>C16 - C34	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	101%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	84%
Surrogate o-Terphenyl	%		Org-003	70	[NT]	[NT]	LCS-W1	89%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Date extracted	-			18/05/2 017	[NT]	[NT]	LCS-W1	18/05/2017
Date analysed	-			19/05/2 017	[NT]	[NT]	LCS-W1	19/05/2017
Naphthalene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	75%
Acenaphthylene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	112%
Phenanthrene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	131%
Anthracene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	120%
Pyrene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	118%
Benzo(a)anthracene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]

		Clie	nt Referenc	e: 52	2680, Enfield	DD		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Chrysene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	100%
Benzo(b,j+k) fluoranthene	μg/L	2	Org-012	2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	125%
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	80	[NT]	[NT]	LCS-W1	128%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Total Phenolics in Water					Sm#	Base II Duplicate II % RPD		Recovery
Total Friendics in Water								
Date extracted	-			17/05/2 017	[NT]	[NT]	LCS-W1	17/05/2017
Date analysed	-			17/05/2 017	[NT]	[NT]	LCS-W1	17/05/2017
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]	[NT]	LCS-W1	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II %RPD		
Date prepared	-			18/05/2 017	167217-1	18/05/2017 18/05/2017	LCS-W1	18/05/2017
Date analysed	-			18/05/2 017	167217-1	18/05/2017 18/05/2017	LCS-W1	18/05/2017
Arsenic-Dissolved	μg/L	1	Metals-022	<1	167217-1	5 5 RPD:0	LCS-W1	99%
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	167217-1	<0.1 <0.1	LCS-W1	104%
Chromium-Dissolved	μg/L	1	Metals-022	<1	167217-1	<1 <1	LCS-W1	93%
Copper-Dissolved	μg/L	1	Metals-022	<1	167217-1	<1 <1	LCS-W1	89%
Lead-Dissolved	μg/L	1	Metals-022	<1	167217-1	<1 <1	LCS-W1	106%
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	167217-1	<0.05 [N/T]	LCS-W1	98%
Nickel-Dissolved	μg/L	1	Metals-022	<1	167217-1	5 5 RPD:0	LCS-W1	99%
Zinc-Dissolved	μg/L	1	Metals-022	<1	167217-1	2 2 RPD:0	LCS-W1	99%

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

Envirolab Reference: 167217 Revision No: R 00 Page 10 of 11

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 167217 Page 11 of 11 Revision No: R 00

CHAIN OF CUSTODY

PROJECT NO.: \$2686				LABORATOF	LABORATORY BATCH NO.:		
	00			SAMPLERS:	NWEIIS		
DATE NEEDED BY: Str. TIPT				QC LEVEL: NEPM (2013)	IEPM (2013)		
PHONE: Sydney: 02 8245 0300 Perth: 08 9488 0100 Brisbane: 07 3112 2688	erth: 08 9488	0100 Bris	bane: 07 3112 2688				
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)	dminnsw@jb:	sg.com.au;	(2) MARCHY S. Molinari@jbs		N Wells @jt	@jbsg.com.au	
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	DISPOSAL:			X7.	s i ou a		ASBESTOS ANALYSIS ANALYSIS S S S S S S S S S S S S S S S S S S
SAMPLE ID MA	MATRIX DATE	TIME	TYPE & PRESERVATIVE	18	948		NOTES:
							Envirolab Services Final Philopolab Services Chatswood NSW 2067 JGD No. 1 Ph. (02) 9970 6200
							Date Received: (6/5/1) Timbe Received: (6:20 Received by:
							Ternpt Codifyambient Couling Tee/(cepack Security: intaceproken/None
RELINQUISHED BY:			METHOD OF SHIPMENT:		RECEIVED BY:	FOR REC	FOR RECEIVING LAB USE ONLY:
NAME: NWELU DATE: 16/5/17		CONSIGNMENT NOTE NO.	NOTE NO.	NAME: JY DATE: (6/ OF:	1744 (1/2/17)	COOLER SEAL – Yes No	Intact Broken
NAME: DATE: OF:	03 F	CONSIGNMENT NOTE NO. TRANSPORT CO	NOTE NO.	NAME: OF:	DATE:	COOLER SEAL – Yes No	Intact Broken
	10 0		OV. Land object Handle Co. L. C. C.	Vicin by the state of the state	- Sulfurio Acid Broad Viol. 5	Colferio Apid Provide 7 - Zino Provide C	Orange of December Cadam D. District Collision Underwind Control December 10 - Collision Underwind Und

012425

CHAIN OF CUSTODY

PROJECT NO.: 57680			1 11			LA	BOF	RATO	ORY E	BATCI	HNO	.:	-		7		100	100		BOU		
PROJECT NAME: MITCH!	1 STYEET	Poh	eld DSI			SA	MP	LERS	. N	W	115											
DATE NEEDED BY: 510	TAT									M (20												
PHONE: Sydney: 02 8245 030	00 Perth: 0	8 9488	3 0100 Brisb	ane: 07 3112 2688																		
SEND REPORT & INVOICE TO	: (1) adminr	isw@jt	osg.com.au; (2) SMOLDAKI	@jbsg.com.	au;	(3)		NX	1611	<u>)</u>		@jb	sg.co	m.au							
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	AL:				I	Ų					¢		П					TYPE OF ASBESTO	os		
						Ę	Ê			-		3		000	İ				ANALYSI:	s		<i>a</i> a
						5	18	_	2	20	-	Ð	X	26					Y XIO	. 5	440	88
SAMPLE ID	MATRIX	DAT	E TIME	TYPE & PRESERVATIVE	Hq	Hrow metals	TRH/BTEX	PAH	Phenoli	Pr. PCB	Clay	Khortou M. PA	BTEX	40/00					IDENTIFICATION	140,000	DOM: To	
BH02-0-1-0-2	28,501	1				1		9		-	, –	<u> </u>	_	70	_		++	_	<u> </u>	NOT	ESI	
BHO2 - 0.7 - 0.4	20,0	2.8.1	1	Just bug + ico		Н		\vdash	-	+	+		- / >	_	-			+	\vdash	+		
BHO2 - 04-05	-	1					×		+	+	+	\dashv		\vdash	_	\vdash	+	+	++	+-		
BHOZ- 6.9-10	 						_	\vdash	-	+			١,	1			++			+		
BH04-0-1-0-2									\dashv					} -			+	+		+		
BH04- 0.4-0.5						$\overline{\mathbf{x}}$	<u></u>	X	· 🖈	X	+	X		X			+++	-		+		
BHO4 -0.9-1.0					-	M			- 1		1		×	- /			11			+		
RH06 - 0-1-0-2						П							×				\top			\top		
BHO6-0.2-0.3						×	X			×	/											
BH06-04-0-5													>	1								
BHO6-1-1-1-2													>									
BH07-00-01				-		┖				\perp	\perp		>									
BH07-0.2-0-3						×	×			\perp	<u> </u>									↓_		
BH07-06-0.7						┺	_										\perp	\perp		1		
BHO8 - 0.0 - 0.)						_				\perp	<u> </u>											
13408-0.2-0.3						X	X						\perp				\perp			\perp		
BH08-0.4-0.5	-	-				_	_			\perp	<u> </u>		>	1			$\perp \perp$					
BHO8 - 0.9.1.0		-									\perp		×			\sqcup	$\perp \perp$	\perp		4_		
BH09-6,0-0.1	V					_							/	<u> </u>		Ш				\perp		
RELINQUISHED BY NAME: DATE:			ONSIGNMENT N	METHOD OF SHIPMENT:		N/	AME:	1	-	EIVED	BY:	_	_	CC	OI ED CE	AI – Va			NG LAB		ILY: roken	
	8.4.17					D	ATE:	V	up	au a	9	17	02						mact		OKEIT	1 1 5 7 3
OF: JBS&G NAME: DATE:			RANSPORT CO.	OTE NO		OI N	F: AME:	1	1			ATE:		CC	OLER TE	MP	. deg C	0	lete et	120	Broken	-
						OI					U	nq	by		OLEN SE	AL- 16	3 IV	·	iiitect		JOKEN	
OF:			RANSPORT CO	110 10 5 7 1111 1111			110	154	1.145	n 16 :					OLER TE	MP	deg C			1121		
Container & Preservative Codes: P = Pl	85tic; J = 50il Jar;	D = Glass	bottle; N = Nitric A	aa xrsva.; C = Sodium Hydroxide Prsvd	; vC = Hydrochlo	ric Ac	id Prs	vd Via	I; VS ≖	Sulfurio	Acid P	rsvd V	ial; S =	Sulfurio	Acid Prsv	d; Z = Zii	ne Prsvd;	E = EDT	A Prsvd;	ST = Ste	ile Bottle; O	= Other

IMSO FormsO13 - Chain of Custody - Generic

012426

CHAIN OF CUSTODY

PROJECT NO .: 57180										ATCH		.:									
PROJECT NAME: MITCHE	11 3+ 6	nheld	1251			SA	MPL	ERS	N	[well	IJ										
DATE NEEDED BY: S+	THT				8	QC	LEV	EL:	NEP	VI (20	13)										
PHONE: Sydney: 02 8245 030	00 Perth: 0	8 9488 01	100 Brisban	e: 07 3112 2688																	
SEND REPORT & INVOICE TO	: (1) adminn	sw@jbsg	.com.au; (2) .	SMolina @jbs	g.com.a	au; (3)	f.	MM	<u>e11</u>)		@	sg.co	m.au						
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	L:										W.A							ASE	PE OF BESTOS	
						HOWANTHO	Y.	1	-					000					_	ALYSIS	
						20	8	_	Phenol	M.		Buchos	77	70ch					IDENTIFICATION	_	544088
		_				200	IRH/B	MAH	2 2	868	Clay	1	37.	<u>Z</u> O					Į	NEPM/WA	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН	I	T	2	2	70	2	25				$\downarrow \downarrow$		$\perp \perp$	9	2	NOTES:
BH09 - 0-3-0-4	Soil	28.4		Jar + bagtice									>			\perp		$\perp \perp$		\perp	
BH09-0.4-0.5						×	X		× /	<u> </u>		\times		_ <u> ×</u>						Ш	
BH10-0.0-0-1	V					\times	\times	X	×>	<		X		×							
				. =																	
																				\Box	
								\dashv												\Box	
		<u> </u>						_			 			\top		+		$\dagger \dagger$	\neg	111	
								\dashv		+	+		\dashv	+		+++	\top	+	-	+	
					-	-		\dashv	-	+	╁	-	+	+	 	+	+	+-+	-	+	
						-		-	_	+	+		-	+		+			-	+	<u> </u>
					+	⊢	\vdash	\dashv		.	-				+	++	-	++	+	+	
					+	_		+	+		-			+	+	+	+	++	-	+	<u> </u>
					+	Ш			-	_	-		\dashv	_	1	1-1		+	+	+	
	4					_		_	_		ļ	\square	\rightarrow	\perp			_	\perp		+	
		ļ						_						\perp	$\sqcup \bot$	$\perp \perp$	\perp	\perp		4	
													\perp	\perp							
QA/20170428						X	X														
RB 2017 64 28	WULL	28.4		bottles + nall + ILL		×	×	×	×>	<				\times							
TB 20176428				VIAIS + ILL									\times								
T520170428	l			1									\prec								
RELINQUISHED BY				METHOD OF SHIPMENT:					REC	EIVED	BY:			1611	THE						SE ONLY:
NAME: NAME: DATE: ZE	@11.17	CON	ISIGNMENT NOTI	E NO.			AME: ATE:	0		al	N	77	02	- 0	OOLER S	EAL - Y	'es	. No	In	tact	Broken
OF: JBS&G	D -4-/ /	TRAI	NSPORT CO.			01		V	W			W		C	OOLER 1	EMP	deg	C			
NAME: DATE:			ISIGNMENT NOT	E NO.	-11		AME:			-	D	ATE:	.1	C	OOLER S	EAL - Y	'es	No	dlr	ntact	Broken
or.		TDA	NSPORT CO			01	F:				9	9/0	M		OOLER '	CAAD	dos				AL INC.
OF: Container & Preservative Codes: P = Pl	astic; J = Soil Jar:			Prsvd.; C = Sodium Hydroxide Prsvd; VC =	Hydrochlor	ric Ac	id Prsv	d Vial); VS = !	Sulfuric	Acid P	rsve V	/ial; S =						EDTA PI	rsvd; ST	= Sterile Bottle; O = Other
												_	-								

IMSO FormsO13 - Chain of Custody - Generic

Company Name: JBS & G Australia (NSW) P/L Add ess:

Add ess:

1,275 ject Name:

1,275 ject ID: Level 1, 50 Margaret St

Sydney NSW 2000

MITCHELL STREET ENFIELD DSI

52680

Order No.: Received: Apr 28, 2017 5:02 PM

Report #: May 5, 2017 544088 Due: 02 8245 0300 Priority: 5 Day Phone: Contact Name: Fax: Seth Molinari

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

ABN–50 005 085 521 e.mail: EnviroSales@eurofins.com N/web: www.eurofins.com.au		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	Phenols (IWRG 621)	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
elbe	urne Laborato	ory - NATA Site	# 1254 & 142	271													Х	
<mark>rdn</mark>	y Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
isb	ane Laborator	y - NATA Site #	20794			Х												
rth	Laboratory - N	NATA Site # 182	:17															
	ral Laboratory																	
70 o	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
	BH02_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23236								Х		Х	Х		Х
_	BH04_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23237		Х		Х	Х	Х	Х	Χ	Х	Х	Х		Х
	BH06_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23238	Х							Х		Х	Х	Х	Х
	BH07_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23239								Х		Х	Х		Х
	BH08_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23240								Х		Х	Х		Х
	BH09_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23241		Х		Х	Х	Х	Х	Х	Х	Х	Х		Х
	BH10_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23242		Х		Х	Х	Х	Х	Х	Х	Х	Х		Х
	QA120170428	Apr 28, 2017		Soil	S17-Ap23243								Χ		Х	Х		Х
	RB20170428	Apr 28, 2017		Water	S17-Ap23244				Х			Х	Χ	Х	Х			Х

Com pany
Address:

Address JBS & G Australia (NSW) P/L Level 1, 50 Margaret St

Sydney NSW 2000

MITCHELL STREET ENFIELD DSI

52680

Order No.: Received: Apr 28, 2017 5:02 PM

Report #: May 5, 2017 544088 Due: 5 Day Seth Molinari Phone: 02 8245 0300 Priority: Contact Name: Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

ABN-50 005 085 521 Pho e.mail: EnviroSales@eurofins.com NAT web: www.eurofins.com.au Site		San	nple Detail		% Clay	Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	Phenols (IWRG 621)	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
elbo	urne Laborato	ory - NATA Site #	‡ 1254 & 14271													Х	
dn	y Laboratory	- NATA Site # 18	217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
isb	ne Laborator	y - NATA Site # 2	20794		Х												
rth	Laboratory - I	NATA Site # 1821	17														
	B20170428	Apr 28, 2017	Water	S17-Ap23245										Х			
70	S20170428	Apr 28, 2017	Water	S17-Ap23246										Х			
<u> </u>	H02_0.1-0.2	Apr 28, 2017	Soil	S17-Ap23247			Х										
	BH02_0.3-0.4	Apr 28, 2017	Soil	S17-Ap23248			Х										
	BH02_0.9-1.0	Apr 28, 2017	Soil	S17-Ap23249			Х										
	BH04_0.1-0.2	Apr 28, 2017	Soil	S17-Ap23250			Х										
	H04_0.9-1.0	Apr 28, 2017	Soil	S17-Ap23251			Х										
	H06_0.1-0.2	Apr 28, 2017	Soil	S17-Ap23252			Х										
	H06_0.4-0.5	Apr 28, 2017	Soil	S17-Ap23253			Х										
	BH06_1.1-1.2	Apr 28, 2017	Soil	S17-Ap23254			Х										
	H07_0.0-0.1	Apr 28, 2017	Soil	S17-Ap23255			Х										
	H07_0.6-0.7	Apr 28, 2017	Soil	S17-Ap23256			Х										

Com pany Address: Add JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

MITCHELL STREET ENFIELD DSI

52680

Order No.: Report #: Phone:

Fax:

544088

02 8245 0300

Received: Apr 28, 2017 5:02 PM

May 5, 2017 Due: 5 Day Seth Molinari Priority: Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

ABN 50 005 085 521 Pho			Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	Phenols (IWRG 621)	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
el	bc	urne Laborato	ory - NATA Site	# 1254 & 142	71													Х	
10	lne	y Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ
is	sb	ne Laborator	y - NATA Site #	20794			Х												
r	th	Laboratory - N	NATA Site # 182	17															
<u>.</u>		H08_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23257			Х										
- 0		H08_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23258			Х										
<u></u>		H08_0.9-1.0	Apr 28, 2017		Soil	S17-Ap23259			Х										
- [H09_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23260			Х										
- [H09_0.3-0.4	Apr 28, 2017		Soil	S17-Ap23261			Х										
S	t (ounts					1	3	15	4	3	3	4	9	4	11	8	1	9

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Seth Molinari Report 544088-AID

Project Name MITCHELL STREET ENFIELD DSI

Project ID 52680

Received Date Apr 28, 2017

Date Reported May 05, 2017

Methodology:

Asbestos ID

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. Bulk samples include building materials, soils and ores.

Subsampling Soil Samples

The whole sample submitted is first dried and then sieved through a 10mm sieve followed by a 2mm sieve. All fibrous matter viz greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) Iron ores - Sampling and Sample preparation procedures is employed. Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated and where required interfering organic fibres or matter may be removed by treating the sample for several hours at a temperature not exceeding 400 ± 30 °C. The resultant material is then ground and examined in accordance with AS 4964-2004.

Limit of Reporting

The nominal detection limit of the AS4964 method is around 0.01%. The examination of large sample sizes (at least 500 ml is recommended) may improve the likelihood of identifying asbestos material in the greater than 2 mm fraction. The NEPM screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres. NOTE: NATA News, September 2011 – page 34, states, "Weighing of fibres is problematic and can lead to loss of fibres and potential exposure for laboratory analysts. To request laboratories to report information which is outside the scope of AS 4964-2004 and the scope of their accreditation is misleading and is most unwise" therefore such values reported are outside the scope of Eurofins | mgt NATA accreditation as designated by an asterisk.

Report Number: 544088-AID

mgt

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name MITCHELL STREET ENFIELD DSI

Project ID 52680

Date SampledApr 28, 2017Report544088-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH04_0.4-0.5	17-Ap23237	Apr 28, 2017	Approximate Sample 568g Sample consisted of: Dark brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11
BH09_0.4-0.5	17-Ap23241	Apr 28, 2017	Approximate Sample 1029g Sample consisted of: Dark brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. ^{M11}
BH10_0.0-0.1	17-Ap23242	Apr 28, 2017	Comple consisted of Dork brown seems are a sell and reals	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. ^{M11}

Page 2 of 8

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyApr 28, 2017Indefinite

Report Number: 544088-AID

Company Name:

Project Name:

mgt

MITCHELL STREET ENFIELD DSI

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane 16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth

2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

JBS & G Australia (NSW) P/L Order No.: Received: Apr 28, 2017 5:02 PM

Address: Level 1, 50 Margaret St Report #: 544088 Due: May 5, 2017 Sydney Phone: 02 8245 0300 Priority: 5 Day

NSW 2000 Fax: **Contact Name:** Seth Molinari

Project ID: 52680 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			% Clay	Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	Phenols (IWRG 621)	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271													Χ	
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Х
	bane Laboratory					Х												—
	h Laboratory - N		17															\vdash
Exte	rnal Laboratory			1	T													\vdash
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	BH02_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23236								Х		Χ	Х		X
2	BH04_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23237		Х		Х	Х	Х	Х	Х	Х	Х	Х		X
3	BH06_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23238	Х							Х		Х	Х	Х	Х
4	BH07_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23239								Х		Х	Х		Х
5	BH08_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23240								Х		Х	Х		Х
6	BH09_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23241		Х		Х	Х	Х	Х	Х	Х	Х	Х		Х
7	BH10_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23242		Х		Х	Х	Х	Х	Х	Х	Х	Х		Х
8	QA120170428	Apr 28, 2017		Soil	S17-Ap23243								Х		Х	Х		Х
9	RB20170428	Apr 28, 2017		Water	S17-Ap23244				Х			Χ	Х	Х	Χ			Χ

Page 4 of 8

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne

Site # 1254 & 14271

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Sydney Unit F3, Building F 16 Mars Road

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Apr 28, 2017 5:02 PM

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000 Order No.: Report #: Phone:

Fax:

544088

02 8245 0300

May 5, 2017 Priority: 5 Day

Received:

Due:

Contact Name: Seth Molinari

Project Name:

MITCHELL STREET ENFIELD DSI

Project ID: 52680

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	Phenols (IWRG 621)	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 1427 ²	1													Χ	
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Χ	Х
Bris	bane Laborator	y - NATA Site #	20794			Х												
Pert	h Laboratory - N	NATA Site # 182	17															
10	TB20170428	Apr 28, 2017	V	Vater	S17-Ap23245										Χ			
11	TS20170428	Apr 28, 2017		Vater	S17-Ap23246										Х			
12	BH02_0.1-0.2	Apr 28, 2017		Soil	S17-Ap23247			Х										
13	BH02_0.3-0.4	Apr 28, 2017	_	Soil	S17-Ap23248			Х										
14	BH02_0.9-1.0	Apr 28, 2017	_	Soil	S17-Ap23249			Х										
15	BH04_0.1-0.2	Apr 28, 2017		Soil	S17-Ap23250			Х										
16	BH04_0.9-1.0	Apr 28, 2017		Soil	S17-Ap23251			Х										
17	BH06_0.1-0.2	Apr 28, 2017		Soil	S17-Ap23252			Х										
18	BH06_0.4-0.5	Apr 28, 2017	_	Soil	S17-Ap23253			Х										
19	BH06_1.1-1.2	Apr 28, 2017		Soil	S17-Ap23254			Х										
20	BH07_0.0-0.1	Apr 28, 2017	_	Soil	S17-Ap23255			Х										
21	BH07_0.6-0.7	Apr 28, 2017	S	Soil	S17-Ap23256			X										

Page 5 of 8

Company Name:

Project Name:

Address:

mgt

MITCHELL STREET ENFIELD DSI

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane

16 Mars Road

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

JBS & G Australia (NSW) P/L Order No.: Received: Apr 28, 2017 5:02 PM

Level 1, 50 Margaret St Report #: 544088 Due: May 5, 2017 Sydney Phone: 02 8245 0300 Priority: 5 Day

NSW 2000 Fax: **Contact Name:** Seth Molinari

Project ID: 52680 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	Phenols (IWRG 621)	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	
Mell	ourne Laborato	ory - NATA Site	# 1254 & 1427	71													Χ		
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	
Bris	bane Laborator	y - NATA Site #	20794			Х													
Pert	h Laboratory - N	NATA Site # 182	17																
22	BH08_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23257			Х											
23	BH08_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23258			Х											
24	BH08_0.9-1.0	Apr 28, 2017		Soil	S17-Ap23259			Х											
25	BH09_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23260			Х											
26	BH09_0.3-0.4	Apr 28, 2017		Soil	S17-Ap23261			Х											
Test	Counts							15	4	3	3	4	9	4	11	8	1	9	

Page 6 of 8

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Date Reported: May 05, 2017

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.
COC Chain of custody
SRA Sample Receipt Advice

ISO International Stardards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very

small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Report Number: 544088-AID

Comments

Sample Integrity

	•	
Custody Seals Intact	t (if used)	N/A
Attempt to Chill was e	evident	Yes
Sample correctly pres	served	Yes
Appropriate sample c	containers have been used	Yes
Sample containers for	or volatile analysis received with minimal headspace	Yes
Samples received wit	ithin HoldingTime	Yes
Some samples have I	been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

M11 NATA accreditation does not cover the performance of this service.

Authorised by:

Nibha Vaidya Senior Analyst - Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Date Reported: May 05, 2017

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 544088-AID

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000 lac-MRA

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Seth Molinari

Report 544088-S

Project name MITCHELL STREET ENFIELD DSI

Project ID 52680 Received Date Apr 28, 2017

Client Sample ID			BH02_0.4-0.5	BH04_0.4-0.5	BH06_0.2-0.3	BH07_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ap23236	S17-Ap23237	S17-Ap23238	S17-Ap23239
Date Sampled			Apr 28, 2017	Apr 28, 2017	Apr 28, 2017	Apr 28, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	•				
TRH C6-C9	20	mg/kg	< 20	< 20	R16< 200	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	60
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	60
BTEX						
Comments					R16	
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 5	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 5	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 5	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 10	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 5	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 15	< 0.3
4-Bromofluorobenzene (surr.)	1	%	72	68	72	70
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	R16< 5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	R16< 500	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	R16< 500	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	-
Acenaphthene	0.5	mg/kg	-	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	-
Anthracene	0.5	mg/kg	-	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	=	-
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	=	-
Benzo(b&j)fluorantheneN07	0.5	mg/kg	-	< 0.5	=	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	=	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	=	-
Chrysene	0.5	mg/kg	-	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	=	-
Fluoranthene	0.5	mg/kg	-	< 0.5	=	-
Fluorene	0.5	mg/kg	-	< 0.5	-	-

Client Sample ID			DU00 0 4 0 5	DU04 0 4 0 5	DUI00 0 0 0 0	DU07 0 0 0 0
-			BH02_0.4-0.5	BH04_0.4-0.5	BH06_0.2-0.3	BH07_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ap23236	S17-Ap23237	S17-Ap23238	S17-Ap23239
Date Sampled			Apr 28, 2017	Apr 28, 2017	Apr 28, 2017	Apr 28, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	-
Naphthalene	0.5	mg/kg	-	< 0.5	-	-
Phenanthrene	0.5	mg/kg	-	< 0.5	-	-
Pyrene	0.5	mg/kg	-	< 0.5	-	-
Total PAH*	0.5	mg/kg	-	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	-	73	-	-
p-Terphenyl-d14 (surr.)	1	%	-	76	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
a-BHC	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.2	mg/kg	-	< 0.2	-	-
Toxaphene	1	mg/kg	-	< 1	-	-
Dibutylchlorendate (surr.)	1	%	-	52	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	95	-	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Bolstar	0.2	mg/kg	-	< 0.2	-	-
Chlorenviron	0.2	mg/kg	-	< 0.2	-	-
Chloropyrifos	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	-	-
Coumaphos	2	mg/kg	-	< 2	-	-
Demeton-S	0.2	mg/kg	-	< 0.2	-	-
Demeton-O	0.2	mg/kg	-	< 0.2	-	-
Diazinon Dichlorvos	0.2	mg/kg	-	< 0.2 < 0.2	-	-
Dimethoate	0.2	mg/kg	-	< 0.2	-	-
Disulfoton	0.2	mg/kg	-	< 0.2	-	-
EPN EPN	0.2	mg/kg	-	< 0.2	-	-
Ethion	0.2	mg/kg	-	< 0.2	-	-
Ethoprop	0.2	mg/kg	-	< 0.2	-	-
Ethyl parathion	0.2	mg/kg mg/kg	-	< 0.2	-	-
Fenitrothion	0.2	mg/kg	-	< 0.2	-	-

Client Sample ID			BH02_0.4-0.5	BH04_0.4-0.5	BH06_0.2-0.3	BH07_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ap23236	S17-Ap23237	S17-Ap23238	S17-Ap23239
· - ·			1		_	
Date Sampled			Apr 28, 2017	Apr 28, 2017	Apr 28, 2017	Apr 28, 2017
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	<u> </u>	1				
Fensulfothion	0.2	mg/kg	-	< 0.2	-	-
Fenthion	0.2	mg/kg	-	< 0.2	-	-
Malathion	0.2	mg/kg	-	< 0.2	-	-
Merphos	0.2	mg/kg	-	< 0.2	-	-
Methyl parathion	0.2	mg/kg	-	< 0.2	-	-
Mevinphos	0.2	mg/kg	-	< 0.2	-	-
Monocrotophos	2	mg/kg	-	< 2	-	-
Omethoate	2	mg/kg	-	< 2	-	-
Phorate	0.2	mg/kg	-	< 0.2	-	-
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Pyrazophos	0.2	mg/kg	-	< 0.2	-	-
Ronnel	0.2	mg/kg	-	< 0.2	-	-
Terbufos	0.2	mg/kg	-	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	-	-
Tokuthion	0.2	mg/kg	-	< 0.2	-	-
Trichloronate	0.2	mg/kg	-	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	-	96	-	-
Polychlorinated Biphenyls		1 "				
Aroclor-1016	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1248	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1254	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1260	0.5	mg/kg	-	< 0.5	-	-
Total PCB*	0.5	mg/kg	-	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	-	52	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	95	-	-
Phenols (Halogenated)	0.5	1 "		0.5		
2-Chlorophenol	0.5	mg/kg	-	< 0.5	-	-
2.4-Dichlorophenol	0.5	mg/kg	-	< 0.5	-	-
2.4.5-Trichlorophenol	1	mg/kg	-	< 1	-	-
2.4.6-Trichlorophenol	1.0	mg/kg	-	<1	-	-
2.6-Dichlorophenol 4-Chloro-3-methylphenol	0.5 1.0	mg/kg	-	< 0.5	-	-
Pentachlorophenol	1.0	mg/kg	-	<1	-	-
Tetrachlorophenols - Total	1.0	mg/kg	-	<1	-	-
Total Halogenated Phenol*	1.0	mg/kg mg/kg	-	< 1	-	-
Phenols (non-Halogenated)	ı ı	Hig/kg	-		-	_
	20			- 20		
2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol	<u>20</u> 5	mg/kg	-	< 20 < 5	-	-
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	< 0.2	-	-
2-Nitrophenol	1	mg/kg	-	< 0.2	-	-
		mg/kg	-		-	-
2.4-Dimethylphenol 2.4-Dinitrophenol	0.5 5	mg/kg	-	< 0.5 < 5	-	-
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	< 0.4	-	-
4-Nitrophenol	5	mg/kg mg/kg	-	< 0.4	-	-
Dinoseb	20	mg/kg	-	< 20	-	-
Phenol	0.5	mg/kg	-	< 0.5	-	-

Client Sample ID			BH02_0.4-0.5	BH04_0.4-0.5	BH06_0.2-0.3	BH07_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ap23236	S17-Ap23237	S17-Ap23238	S17-Ap23239
Date Sampled			Apr 28, 2017	Apr 28, 2017	Apr 28, 2017	Apr 28, 2017
Test/Reference	LOR	Unit				
Phenols (non-Halogenated)						
Total Non-Halogenated Phenol*	20	mg/kg	-	< 20	-	-
Phenol-d6 (surr.)	1	%	-	66	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
% Clay	1	%	-	-	8.8	-
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	-	-	90	-
% Moisture	1	%	6.7	18	13	18
Ion Exchange Properties						
Cation Exchange Capacity	0.05	meq/100g	-	-	15	-
Heavy Metals						
Arsenic	2	mg/kg	3.5	5.7	5.9	16
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	12	19	22	16
Copper	5	mg/kg	25	28	11	12
Lead	5	mg/kg	17	13	30	49
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	19	36	17	5.1
Zinc	5	mg/kg	54	39	33	68

Client Sample ID Sample Matrix			BH08_0.2-0.3 Soil	BH09_0.4-0.5 Soil	BH10_0.0-0.1 Soil	QA120170428 Soil
Eurofins mgt Sample No.			S17-Ap23240	S17-Ap23241	S17-Ap23242	S17-Ap23243
Date Sampled			Apr 28, 2017	Apr 28, 2017	Apr 28, 2017	Apr 28, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	54	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	94	170	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	148	170	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	70	62	68	71
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20

mgt

Client Sample ID			BH08_0.2-0.3	BH09_0.4-0.5	BH10_0.0-0.1	QA120170428
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ap23240	S17-Ap23241	S17-Ap23242	S17-Ap23243
Date Sampled			Apr 28, 2017	Apr 28, 2017	Apr 28, 2017	Apr 28, 2017
Test/Reference	LOR	Unit	Apr 20, 2011	Apr 20, 2017	Apr 20, 2011	Apr 20, 2017
	LOR	Offic				
Polycyclic Aromatic Hydrocarbons	0.5			0.5	0.5	
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	< 0.5	=
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	1.2	-
Acenaphthene	0.5	mg/kg	-	< 0.5	< 0.5	-
Actions	0.5	mg/kg	-	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	=
Chrysene	0.5	mg/kg	-	< 0.5	< 0.5	=
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	=
Fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	-	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	-	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Total PAH*	0.5	mg/kg	-	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	-	76	76	-
p-Terphenyl-d14 (surr.)	1	%	-	77	76	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	< 0.05	-
а-ВНС	0.05	mg/kg	-	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg	-	< 0.05	< 0.05	-
b-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
d-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	< 0.05	-
Heptachlor	0.05	mg/kg	-	< 0.05	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	< 0.05	-
Methoxychlor	0.2	mg/kg	-	< 0.2	< 0.2	-
Toxaphene	1	mg/kg	-	< 1	< 1	-
Dibutylchlorendate (surr.)	1	%	-	58	56	-
Tetrachloro-m-xylene (surr.)	1	%	-	76	80	-

Client Sample ID			BH08_0.2-0.3	BH09_0.4-0.5	BH10_0.0-0.1	QA120170428
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ap23240	S17-Ap23241	S17-Ap23242	S17-Ap23243
Date Sampled			Apr 28, 2017	Apr 28, 2017	Apr 28, 2017	Apr 28, 2017
Test/Reference	LOR	Unit		•	•	, ,
Organophosphorus Pesticides	1 2011	- Onne				
Azinphos-methyl	0.2	mg/kg	_	< 0.2	< 0.2	_
Bolstar	0.2	mg/kg	_	< 0.2	< 0.2	_
Chlorfenvinphos	0.2	mg/kg	_	< 0.2	< 0.2	_
Chlorpyrifos	0.2	mg/kg	_	< 0.2	< 0.2	_
Chlorpyrifos-methyl	0.2	mg/kg	_	< 0.2	< 0.2	_
Coumaphos	2	mg/kg	_	< 2	< 2	_
Demeton-S	0.2	mg/kg	_	< 0.2	< 0.2	_
Demeton-O	0.2	mg/kg	_	< 0.2	< 0.2	_
Diazinon	0.2	mg/kg	_	< 0.2	< 0.2	_
Dichlorvos	0.2	mg/kg	_	< 0.2	< 0.2	_
Dimethoate	0.2	mg/kg		< 0.2	< 0.2	
Disulfoton	0.2	mg/kg	_	< 0.2	< 0.2	_
EPN	0.2	mg/kg	_	< 0.2	< 0.2	_
Ethion	0.2	mg/kg	_	< 0.2	< 0.2	_
Ethoprop	0.2	mg/kg	_	< 0.2	< 0.2	_
Ethyl parathion	0.2	mg/kg	_	< 0.2	< 0.2	_
Fenitrothion	0.2	mg/kg	_	< 0.2	< 0.2	_
Fensulfothion	0.2	mg/kg	_	< 0.2	< 0.2	_
Fenthion	0.2	mg/kg	_	< 0.2	< 0.2	_
Malathion	0.2	mg/kg	_	< 0.2	< 0.2	_
Merphos	0.2	mg/kg	_	< 0.2	< 0.2	_
Methyl parathion	0.2	mg/kg	_	< 0.2	< 0.2	
Mevinphos	0.2	mg/kg	_	< 0.2	< 0.2	
Monocrotophos	2	mg/kg	_	< 2	< 2	
Omethoate	2	mg/kg		< 2	< 2	
Phorate	0.2	mg/kg		< 0.2	< 0.2	
Pirimiphos-methyl	0.2	mg/kg		< 0.2	< 0.2	
Pyrazophos	0.2	mg/kg	-	< 0.2	< 0.2	-
Ronnel	0.2			< 0.2	< 0.2	
Terbufos	0.2	mg/kg mg/kg	-	< 0.2	< 0.2	-
Tetrachlorvinphos	0.2			< 0.2	< 0.2	-
Tokuthion	0.2	mg/kg mg/kg	-	< 0.2	< 0.2	-
Trichloronate	0.2	mg/kg	-	< 0.2	< 0.2	-
Triphenylphosphate (surr.)	1	%	_	98	98	_
Polychlorinated Biphenyls		/0	_	30	30	_
Aroclor-1016	0.5	malka		-05	-05	
	0.5	mg/kg	-	< 0.5 < 0.1	< 0.5 < 0.1	-
Arcelor 1222	0.1	mg/kg	-	< 0.1	< 0.1	-
Aroclor-1232	0.5	mg/kg	-	< 0.5	< 0.5	-
Arodor 1248		mg/kg	-			-
Arcelor 1254	0.5	mg/kg	-	< 0.5	< 0.5	-
Arcelor 1360	0.5	mg/kg	-	< 0.5	< 0.5	-
Aroclor-1260	0.5	mg/kg	-	< 0.5	< 0.5	-
Total PCB*	0.5	mg/kg	-	< 0.5	< 0.5	-
Dibutylchlorendate (surr.) Tetrachloro-m-xylene (surr.)	1	%	-	58 76	56 80	-

Client Sample ID			BH08_0.2-0.3	BH09_0.4-0.5	BH10_0.0-0.1	QA120170428
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ap23240	S17-Ap23241	S17-Ap23242	S17-Ap23243
Date Sampled			Apr 28, 2017	Apr 28, 2017	Apr 28, 2017	Apr 28, 2017
Test/Reference	LOR	Unit		,	•	•
Phenois (Halogenated)		0				
2-Chlorophenol	0.5	mg/kg	_	< 0.5	< 0.5	-
2.4-Dichlorophenol	0.5	mg/kg	_	< 0.5	< 0.5	_
2.4.5-Trichlorophenol	1	mg/kg	_	< 1	< 1	-
2.4.6-Trichlorophenol	1.0	mg/kg	_	< 1	< 1	-
2.6-Dichlorophenol	0.5	mg/kg	-	< 0.5	< 0.5	-
4-Chloro-3-methylphenol	1.0	mg/kg	_	< 1	< 1	-
Pentachlorophenol	1.0	mg/kg	-	< 1	< 1	=
Tetrachlorophenols - Total	1.0	mg/kg	-	< 1	< 1	=
Total Halogenated Phenol*	1	mg/kg	-	< 1	< 1	-
Phenols (non-Halogenated)	<u>.</u>					
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	-	< 20	< 20	-
2-Methyl-4.6-dinitrophenol	5	mg/kg	-	< 5	< 5	=
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	< 0.2	< 0.2	-
2-Nitrophenol	1	mg/kg	-	< 1	< 1	-
2.4-Dimethylphenol	0.5	mg/kg	-	< 0.5	< 0.5	-
2.4-Dinitrophenol	5	mg/kg	-	< 5	< 5	-
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	< 0.4	< 0.4	-
4-Nitrophenol	5	mg/kg	-	< 5	< 5	-
Dinoseb	20	mg/kg	-	< 20	< 20	-
Phenol	0.5	mg/kg	-	< 0.5	< 0.5	-
Total Non-Halogenated Phenol*	20	mg/kg	-	< 20	< 20	-
Phenol-d6 (surr.)	1	%	-	70	74	-
Total Recoverable Hydrocarbons - 2013 NE	PM Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	120	100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	100	< 100
% Moisture	1	%	7.9	5.7	9.4	15
Heavy Metals						
Arsenic	2	mg/kg	3.0	< 2	5.7	4.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	11	34	8.5	16
Copper	5	mg/kg	11	46	17	30
Lead	5	mg/kg	17	< 5	3500	12
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	6.9	160	6.8	31
Zinc	5	mg/kg	28	59	44	35

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 04, 2017	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 04, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 04, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
BTEX	Sydney	May 04, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	May 03, 2017	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Organochlorine Pesticides	Sydney	May 03, 2017	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	May 03, 2017	14 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	May 03, 2017	28 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Clay	Brisbane	May 03, 2017	6 Day
- Method: LTM-GEN-7040			
Metals M8	Sydney	May 04, 2017	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			
Phenols (Halogenated)	Sydney	May 05, 2017	0 Day
Phenols (non-Halogenated)	Sydney	May 05, 2017	0 Day
Conductivity (1:5 aqueous extract at 25°C)	Melbourne	May 03, 2017	7 Day
- Method: LTM-INO-4030			
Ion Exchange Properties	Melbourne	May 03, 2017	
% Moisture	Sydney	Apr 28, 2017	14 Day

; I L	II Laboratory -	NATA SILE # 102	. 1 /														
te	rnal Laboratory	у															
0	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
=	BH02_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23236							Х		Х	Х		Х
	BH04_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23237		Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
	BH06_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23238	Х						Х		Х	Х	Х	Х
	BH07_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23239							Х		Х	Х		Х
	BH08_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23240							Х		Х	Х		Х
	BH09_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23241		Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
	BH10_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23242		Х	Х	Х	Х	Х	Х	Х	Х	Х	201;	Х
	QA120170428	Apr 28, 2017		Soil	S17-Ap23243							Х		Х	Х	.05,	Х
	RB20170428	Apr 28, 2017		Water	S17-Ap23244			Х			Х	Х	Х	Х		Мау	Х
																Date Reported	
	I															De	

Com pany
Address:

Address JBS & G Australia (NSW) P/L Level 1, 50 Margaret St

Sydney NSW 2000

MITCHELL STREET ENFIELD DSI

52680

Order No.: Received: Apr 28, 2017 5:02 PM

Report #: May 5, 2017 544088 Due: 5 Day Seth Molinari Phone: 02 8245 0300 Priority: Contact Name: Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

ABN-50 005 085 521 Pho e.mail: EnviroSales@eurofins.com NAT web: www.eurofins.com.au Site		San	nple Detail		% Clay	Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	Phenols (IWRG 621)	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
elbo	urne Laborato	ory - NATA Site #	‡ 1254 & 14271													Х	
dn	y Laboratory	- NATA Site # 18	217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
isb	ne Laborator	y - NATA Site # 2	20794		Х												
rth	Laboratory - I	NATA Site # 1821	17														
	B20170428	Apr 28, 2017	Water	S17-Ap23245										Х			
70	S20170428	Apr 28, 2017	Water	S17-Ap23246										Х			
<u> </u>	H02_0.1-0.2	Apr 28, 2017	Soil	S17-Ap23247			Х										
	BH02_0.3-0.4	Apr 28, 2017	Soil	S17-Ap23248			Х										
	BH02_0.9-1.0	Apr 28, 2017	Soil	S17-Ap23249			Х										
	BH04_0.1-0.2	Apr 28, 2017	Soil	S17-Ap23250			Х										
	H04_0.9-1.0	Apr 28, 2017	Soil	S17-Ap23251			Х										
	H06_0.1-0.2	Apr 28, 2017	Soil	S17-Ap23252			Х										
	H06_0.4-0.5	Apr 28, 2017	Soil	S17-Ap23253			Х										
	BH06_1.1-1.2	Apr 28, 2017	Soil	S17-Ap23254			Х										
	H07_0.0-0.1	Apr 28, 2017	Soil	S17-Ap23255			Х										
	H07_0.6-0.7	Apr 28, 2017	Soil	S17-Ap23256			Х										

Com pany Address: Add JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

MITCHELL STREET ENFIELD DSI

52680

Order No.: Report #: Phone:

Fax:

544088

02 8245 0300

Received: Apr 28, 2017 5:02 PM

May 5, 2017 Due: 5 Day Seth Molinari Priority: Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

ABN 50 005 085 521 Pho			Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	Phenols (IWRG 621)	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
el	bc	urne Laborato	ory - NATA Site	# 1254 & 142	71													Х	
10	lne	y Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ
is	sb	ne Laborator	y - NATA Site #	20794			Х												
r	th	Laboratory - N	NATA Site # 182	17															
_		H08_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23257			Х										
- 0		H08_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23258			Х										
<u></u>		H08_0.9-1.0	Apr 28, 2017		Soil	S17-Ap23259			Х										
- [H09_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23260			Х										
- [H09_0.3-0.4	Apr 28, 2017		Soil	S17-Ap23261			Х										
S	t (ounts					1	3	15	4	3	3	4	9	4	11	8	1	9

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank			 		
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	1g,g	120			
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene		< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
	mg/kg				
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Mathe at Plants	mg/kg	< 0.5	0.5	Pass	
Method Blank			1		
Organochlorine Pesticides		0.4	0.4	D	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	1

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank		T T	1		
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank		1 1			
Phenols (Halogenated)					

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
2-Chlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	< 1	1	Pass	
2.4.6-Trichlorophenol	mg/kg	< 1	1.0	Pass	
2.6-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	<1	1.0	Pass	
Pentachlorophenol	mg/kg	<1	1.0	Pass	
Tetrachlorophenols - Total	mg/kg	< 1	1.0	Pass	
Method Blank					
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	mg/kg	< 20	20	Pass	
2-Methyl-4.6-dinitrophenol	mg/kg	< 5	5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.2	0.2	Pass	
2-Nitrophenol	mg/kg	<1	1	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dinitrophenol	mg/kg	< 5	5	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4	0.4	Pass	
4-Nitrophenol	mg/kg	< 5.4	5	Pass	
Dinoseb	mg/kg	< 20	20	Pass	
Phenol			0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				_	
TRH > C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank		<u> </u>		I	
% Clay	%	<1	1	Pass	
Method Blank		T T	1		
Ion Exchange Properties					
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCC 0/ December					
LC3 - % Recovery					
LCS - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions		1			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	%	111	70-130	Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9	%	111	70-130 70-130	Pass Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 TRH C10-C14		111 109	70-130 70-130		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 TRH C10-C14 LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 TRH C10-C14 LCS - % Recovery BTEX	%	109	70-130	Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 TRH C10-C14 LCS - % Recovery BTEX Benzene	%	109	70-130	Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 TRH C10-C14 LCS - % Recovery BTEX Benzene Toluene	% % %	109 114 118	70-130 70-130 70-130	Pass Pass Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 TRH C10-C14 LCS - % Recovery BTEX Benzene Toluene Ethylbenzene	% % %	109 114 118 120	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 TRH C10-C14 LCS - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	% % % %	114 118 120 115	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 TRH C10-C14 LCS - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	% % % % %	114 118 120 115 117	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 TRH C10-C14 LCS - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	% % % %	114 118 120 115	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Naphthalene	%	129	70-130	Pass	
TRH C6-C10	%	106	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	77	70-130	Pass	
Acenaphthylene	%	83	70-130	Pass	
Anthracene	%	93	70-130	Pass	
Benz(a)anthracene	%	88	70-130	Pass	
Benzo(a)pyrene	%	82	70-130	Pass	
Benzo(g.h.i)perylene	%	83	70-130	Pass	
Benzo(k)fluoranthene	%	87	70-130	Pass	
Chrysene	%	89	70-130	Pass	
Dibenz(a.h)anthracene	%	79	70-130	Pass	
Fluoranthene	%	86	70-130	Pass	
Fluorene	%	87	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	83	70-130	Pass	
Naphthalene	%	81	70-130	Pass	
Phenanthrene	%	89	70-130	Pass	
Pyrene	%	86	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	122	70-130	Pass	
4.4'-DDD	%	130	70-130	Pass	
4.4'-DDE	%	117	70-130	Pass	
a-BHC	%	120	70-130	Pass	
Aldrin	%	109	70-130	Pass	
b-BHC	%	119	70-130	Pass	
d-BHC	%	126	70-130	Pass	
Dieldrin	%	128	70-130	Pass	
Endosulfan I	%	121	70-130	Pass	
Endosulfan II	%	125	70-130	Pass	
Endosulfan sulphate	%	125	70-130	Pass	
Endrin	%	128	70-130	Pass	
Endrin aldehyde	%	116	70-130	Pass	
Endrin ketone	%	126	70-130	Pass	
g-BHC (Lindane)	%	115	70-130	Pass	
Heptachlor	%	126	70-130	Pass	
Heptachlor epoxide	%	78	70-130	Pass	
Hexachlorobenzene	%	125	70-130	Pass	
Methoxychlor	%	118	70-130	Pass	
Toxaphene	%	128	70-130	Pass	
LCS - % Recovery					
Organophosphorus Pesticides					
Dimethoate	%	103	70-130	Pass	
Fenitrothion	%	105	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls					
Aroclor-1260	%	81	70-130	Pass	
LCS - % Recovery					
Phenols (Halogenated)					
2-Chlorophenol	%	82	30-130	Pass	
2.4-Dichlorophenol	%	87	30-130	Pass	
2.4.5-Trichlorophenol	0/	90	30-130	Pass	
2.4.5-Trichlorophenol	%	90	30-130	1 000	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
2.6-Dichlorophenol			%	85	30-130	Pass	
4-Chloro-3-methylphenol			%	77	30-130	Pass	
Pentachlorophenol			%	91	30-130	Pass	
Tetrachlorophenols - Total			%	96	30-130	Pass	
LCS - % Recovery				•			
Phenols (non-Halogenated)							
2-Cyclohexyl-4.6-dinitrophenol			%	103	30-130	Pass	
2-Methyl-4.6-dinitrophenol			%	104	30-130	Pass	
2-Methylphenol (o-Cresol)			%	87	30-130	Pass	
2-Nitrophenol			%	77	30-130	Pass	
2.4-Dimethylphenol			%	81	30-130	Pass	
2.4-Dinitrophenol			%	78	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	81	30-130	Pass	
4-Nitrophenol			%	95	30-130	Pass	
Dinoseb			%	82	30-130	Pass	
Phenol			%	79	30-130	Pass	
LCS - % Recovery			/0	, ,,	00 100	1 433	
Total Recoverable Hydrocarbons -	2013 NFPM Fract	ions					
TRH >C10-C16	-515 NEI WIFIAC		%	100	70-130	Pass	
LCS - % Recovery			/0	100	10-130	1 055	
% Clay			%	100	70-130	Pass	
			70	100	70-130	Pass	
LCS - % Recovery							
Heavy Metals			0/	00	70.400	D	
Arsenic			%	89	70-130	Pass	
Cadmium			%	84	70-130	Pass	
Chromium			%	86	70-130	Pass	
Copper			%	91	70-130	Pass	
Lead			%	102	70-130	Pass	
Mercury			%	104	70-130	Pass	
Nickel			%	87	70-130	Pass	
Zinc	T		%	81	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S17-My02563	NCP	%	72	70-130	Pass	
Cadmium	S17-My02563	NCP	%	76	70-130	Pass	
Chromium	S17-Ap23100	NCP	%	89	70-130	Pass	
Copper	S17-My02563	NCP	%	80	70-130	Pass	
Lead	S17-Ap23100	NCP	%	74	70-130	Pass	
Mercury	S17-Ap23100	NCP	%	93	70-130	Pass	
Nickel	S17-Ap23100	NCP	%	85	70-130	Pass	
Zinc	S17-My02563	NCP	%	86	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbons	<u> </u>			Result 1			
Acenaphthene	S17-My01083	NCP	%	82	70-130	Pass	
Acenaphthylene	S17-My01083	NCP	%	85	70-130	Pass	
Anthracene	S17-My01083	NCP	%	91	70-130	Pass	
Benz(a)anthracene	S17-My01083	NCP	%	85	70-130	Pass	
Benzo(a)pyrene	S17-My01083	NCP	%	77	70-130	Pass	
Benzo(b&j)fluoranthene	S17-Mg01083	NCP	%	65	70-130	Fail	Q08
Benzo(g.h.i)perylene		NCP		87	70-130	Pass	Q00
Benzo(g.n.i)perylene Benzo(k)fluoranthene	S17-My01083		%	1			
DEUZOKUNUGRADIDENE	S17-My01083	NCP	%	80	70-130	Pass	
. ,	047 14:01000	N100	0/	0.5	70 400	D	l
Chrysene Dibenz(a.h)anthracene	S17-My01083 S17-My01083	NCP NCP	% %	85 84	70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Fluoranthene	S17-My01083	NCP	%	78	70-130	Pass	
Fluorene	S17-My01083	NCP	%	91	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S17-My01083	NCP	%	87	70-130	Pass	
Naphthalene	S17-My01083	NCP	%	78	70-130	Pass	
Phenanthrene	S17-My01083	NCP	%	85	70-130	Pass	
Pyrene	S17-My01083	NCP	%	75	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S17-My00818	NCP	%	125	70-130	Pass	
4.4'-DDD	S17-My04095	NCP	%	128	70-130	Pass	
4.4'-DDE	S17-My00818	NCP	%	125	70-130	Pass	
4.4'-DDT	S17-My00818	NCP	%	87	70-130	Pass	
a-BHC	S17-My00818	NCP	%	119	70-130	Pass	
Aldrin	S17-My00818	NCP	%	113	70-130	Pass	
b-BHC	S17-My00818	NCP	%	100	70-130	Pass	
d-BHC	S17-My00818	NCP	%	117	70-130	Pass	
Dieldrin	S17-My00818	NCP	%	128	70-130	Pass	
Endosulfan I	S17-My00818	NCP	%	128	70-130	Pass	
Endosulfan II	S17-My00818	NCP	%	121	70-130	Pass	
Endosulfan sulphate	S17-My00818	NCP	%	119	70-130	Pass	
Endrin	S17-My00818	NCP	%	126	70-130	Pass	
Endrin aldehyde	S17-My00818	NCP	%	100	70-130	Pass	
Endrin ketone	S17-My00818	NCP	%	128	70-130	Pass	
g-BHC (Lindane)	S17-My00818	NCP	%	111	70-130	Pass	
Heptachlor	S17-My00818	NCP	%	114	70-130	Pass	
Heptachlor epoxide	S17-My00818	NCP	%	76	70-130	Pass	
Methoxychlor	S17-My00818	NCP	%	102	70-130	Pass	
Spike - % Recovery						1 3.55	
Organophosphorus Pesticides				Result 1			
Dimethoate	S17-Ap23041	NCP	%	103	70-130	Pass	
Fenitrothion	S17-Ap23041	NCP	%	105	70-130	Pass	
Spike - % Recovery	<u> </u>		,,,	.00	10.00	1	
Polychlorinated Biphenyls				Result 1			
Aroclor-1260	S17-My04095	NCP	%	85	70-130	Pass	
Spike - % Recovery	1 017 Wy04000	1401	70		70 100	1 455	
Phenois (Halogenated)				Result 1			
2-Chlorophenol	S17-My02110	NCP	%	90	30-130	Pass	
2.4-Dichlorophenol	S17-My02110	NCP	// 0	95	30-130	Pass	
2.4.5-Trichlorophenol	S17-My02110	NCP	// 0	91	30-130	Pass	
2.4.6-Trichlorophenol	S17-My02110	NCP	// //////////////////////////////////	93	30-130	Pass	
2.6-Dichlorophenol	S17-My02110	NCP	// //////////////////////////////////	93	30-130	Pass	
4-Chloro-3-methylphenol	S17-My02110	NCP	%	91	30-130	Pass	
Pentachlorophenol	S17-My02110	NCP	% %	83	30-130	Pass	
Tetrachlorophenols - Total	S17-My02110	NCP	<u>%</u> %	94	30-130	Pass	
Spike - % Recovery	1 017-WIYUZ11U	INCE	/0	J 34	30-130	1 455	
Phenols (non-Halogenated)				Result 1			
2-Methylphenol (o-Cresol)	S17-My01083	NCP	%	74	30-130	Pass	
2-Nitrophenol	S17-My01083	NCP	<u>%</u> %	87	30-130	Pass	
2.4-Dimethylphenol		NCP	<u>%</u> %	86		Pass	
3&4-Methylphenol (m&p-Cresol)	S17-My01083	NCP	<u>%</u> %	94	30-130	Pass	
· · · · · · · · · · · · · · · · · · ·	S17-My02110 S17-My02110	NCP			30-130	1	
4 Nitrophono!	1 317-WW2110	INCE	%	102	30-130	Pass	
4-Nitrophenol				00	20.420	Door	
4-Nitrophenol Phenol Spike - % Recovery	S17-My02110	NCP	%	88	30-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C9	S17-Ap23242	CP	%	108			70-130	Pass	
TRH C10-C14	S17-Ap23242	CP	%	96			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	S17-Ap23242	CP	%	102			70-130	Pass	
Toluene	S17-Ap23242	CP	%	104			70-130	Pass	
Ethylbenzene	S17-Ap23242	CP	%	107			70-130	Pass	
m&p-Xylenes	S17-Ap23242	CP	%	103			70-130	Pass	
o-Xylene	S17-Ap23242	CP	%	103			70-130	Pass	
Xylenes - Total	S17-Ap23242	CP	%	103			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1					
Naphthalene	S17-Ap23242	CP	%	100			70-130	Pass	
TRH C6-C10	S17-Ap23242	CP	%	108			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	S17-Ap23242	CP	%	88			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S17-Ap22218	NCP	%	13	12	5.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S17-Ap23083	NCP	mg/kg	13	11	14	30%	Pass	
Cadmium	S17-Ap23083	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S17-Ap23083	NCP	mg/kg	10	11	6.0	30%	Pass	
Copper	S17-Ap23083	NCP	mg/kg	20	17	15	30%	Pass	
Lead	S17-Ap23083	NCP	mg/kg	14	14	1.0	30%	Pass	
Mercury	S17-Ap23083	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S17-Ap23039	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S17-Ap23083	NCP	mg/kg	35	32	9.0	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarl	bons			Result 1	Result 2	RPD			
Acenaphthene	S17-My01081	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S17-My01081	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S17-My01081	NCP	mg/kg	0.7	< 0.5	35	30%	Fail	Q15
Benz(a)anthracene	S17-My01081	NCP	mg/kg	1.1	0.7	41	30%	Fail	Q15
Benzo(a)pyrene	S17-My01081	NCP	mg/kg	1.0	0.6	43	30%	Fail	Q15
Benzo(b&j)fluoranthene	S17-My01081	NCP	mg/kg	0.6	< 0.5	25	30%	Pass	
Benzo(g.h.i)perylene	S17-My01081	NCP	mg/kg	0.6	< 0.5	46	30%	Fail	Q15
Benzo(k)fluoranthene	S17-My01081	NCP	mg/kg	0.8	< 0.5	53	30%	Fail	Q15
Chrysene	S17-My01081	NCP	mg/kg	1.1	0.7	46	30%	Fail	Q15
Dibenz(a.h)anthracene	S17-My01081	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S17-My01081	NCP	mg/kg	2.7	1.7	46	30%	Fail	Q15
Fluorene	S17-My01081	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S17-My01081	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
				1	1		1 000/	D	I
Naphthalene	S17-My01081	NCP	mg/kg	1.2	1.3	6.0	30%	Pass	
Naphthalene Phenanthrene	S17-My01081 S17-My01081	NCP NCP	mg/kg mg/kg	1.2 2.5	1.3 1.6	6.0 45	30%	Fail	Q15

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S17-My00817	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S17-My00817	NCP		< 0.05	< 0.05	<1	30%	Pass	
•	<u> </u>		mg/kg						
Endrin ketone	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S17-My00817	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S17-My00817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S17-My00817	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate							T		
Organophosphorus Pesticides	T = .			Result 1	Result 2	RPD		_	
Azinphos-methyl	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S17-Ap23237	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S17-Ap23237	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Omethoate	S17-Ap23237	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S17-Ap23237	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S17-Ap23237	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S17-Ap23237	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
· 1					< 0.2	<1	30%	Pass	
Ronnel	S17-Ap23237	I CP	i ijia/ka	< U.Z	\ \ U.Z				
Ronnel Terbufos	S17-Ap23237 S17-Ap23237	CP CP	mg/kg mg/kg	< 0.2 < 0.2	< 0.2	<1	30%	Pass	

Duplicate									
				D 11.4		DDD	l		
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Tokuthion	S17-Ap23237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S17-Ap23237	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				D 11.4		DDD	l		
Polychlorinated Biphenyls	0			Result 1	Result 2	RPD			
Aroclor-1016	S17-My00817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S17-My00817	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S17-My00817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S17-My00817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S17-My00817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S17-My00817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S17-My00817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate					1		ı		
Phenols (Halogenated)	1	1		Result 1	Result 2	RPD			
2-Chlorophenol	S17-My01081	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	S17-My01081	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S17-My01081	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S17-My01081	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	S17-My01081	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	S17-My01081	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	S17-My01081	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	S17-My01081	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				T.	1 1				
Phenols (non-Halogenated)			ı	Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	S17-My01081	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	S17-My01081	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S17-My01081	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
2-Nitrophenol	S17-My01081	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4-Dimethylphenol	S17-My01081	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	S17-My01081	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S17-My01081	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
4-Nitrophenol	S17-My01081	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	S17-My01081	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	S17-My01081	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Clay	S17-Ap23238	CP	%	8.8	11	25	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C)	M17-My02063	NCP	uS/cm	210	200	2.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S17-Ap23241	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S17-Ap23241	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S17-Ap23241	СР	mg/kg	54	50	8.0	30%	Pass	
TRH C29-C36	S17-Ap23241	СР	mg/kg	94	86	10	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S17-Ap23241	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S17-Ap23241	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S17-Ap23241	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S17-Ap23241	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S17-Ap23241	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S17-Ap23241	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
	/ \PLOZ=1	<u> </u>	9,119	, , 0.0			. 5576	. ass	

Duplicate											
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD					
Naphthalene	S17-Ap23241	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
TRH C6-C10	S17-Ap23241	CP	mg/kg	< 20	< 20	<1	30%	Pass			
Duplicate											
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD					
TRH >C10-C16	S17-Ap23241	CP	mg/kg	< 50	< 50	<1	30%	Pass			
TRH >C16-C34	S17-Ap23241	CP	mg/kg	120	110	10	30%	Pass			
TRH >C34-C40	S17-Ap23241	СР	mg/kg	< 100	< 100	<1	30%	Pass			

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference Q08

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

R16 The LORs have been raised due to the high concentration of one or more analytes

Authorised By

N02

Nibha Vaidya Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Huong Le Senior Analyst-Inorganic (VIC) Jonathon Angell Senior Analyst-Inorganic (QLD) Nibha Vaidya Senior Analyst-Asbestos (NSW) Ryan Hamilton Senior Analyst-Inorganic (NSW) Rvan Hamilton Senior Analyst-Metal (NSW) Ryan Hamilton Senior Analyst-Organic (NSW) Senior Analyst-Volatile (NSW) Rvan Hamilton

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | Ingl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential damages including, but not limited to, lost profits, damages for infaliate to meet deadlines and lost production arising from this report. This documents shall be reported used except in full and retalest only to the lients tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Seth Molinari

Report 544088-W

Project name MITCHELL STREET ENFIELD DSI

Project ID 52680

Received Date Apr 28, 2017

Client Sample ID			RB20170428	TB20170428	TS20170428
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S17-Ap23244	S17-Ap23245	S17-Ap23246
Date Sampled			Apr 28, 2017	Apr 28, 2017	Apr 28, 2017
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	1			
TRH C6-C9	0.02	mg/L	< 0.02	-	-
TRH C10-C14	0.05	mg/L	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	-	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-	-
втех	·				
Benzene	0.001	mg/L	< 0.001	< 0.001	95%
Toluene	0.001	mg/L	< 0.001	< 0.001	88%
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	87%
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	90%
o-Xylene	0.001	mg/L	< 0.001	< 0.001	87%
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	89%
4-Bromofluorobenzene (surr.)	1	%	74	80	96
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.01	mg/L	< 0.01	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	-	-
TRH C6-C10	0.02	mg/L	< 0.02	-	-
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	-	-
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.001	mg/L	< 0.001	-	-
Acenaphthylene	0.001	mg/L	< 0.001	-	-
Anthracene	0.001	mg/L	< 0.001	=	-
Benz(a)anthracene	0.001	mg/L	< 0.001	=	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	=	-
Benzo(b&j)fluorantheneN07	0.001	mg/L	< 0.001	-	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	-
Chrysene	0.001	mg/L	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001	-	-
Fluorene	0.001	mg/L	< 0.001	-	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	-
Naphthalene	0.001	mg/L	< 0.001	-	-
Phenanthrene	0.001	mg/L	< 0.001	-	-
Pyrene	0.001	mg/L	< 0.001	-	-

Client Sample ID			RB20170428	TB20170428	TS20170428
Sample Matrix			Water	Water	Water
·					
Eurofins mgt Sample No.			S17-Ap23244	S17-Ap23245	S17-Ap23246
Date Sampled			Apr 28, 2017	Apr 28, 2017	Apr 28, 2017
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons		1			
Total PAH*	0.001	mg/L	< 0.001	-	-
2-Fluorobiphenyl (surr.)	1	%	51	-	-
p-Terphenyl-d14 (surr.)	1	%	98	-	-
Polychlorinated Biphenyls	I	1			
Aroclor-1016	0.005	mg/L	< 0.005	-	-
Aroclor-1221	0.001	mg/L	< 0.001	-	-
Aroclor-1232	0.005	mg/L	< 0.005	-	-
Aroclor-1242	0.005	mg/L	< 0.005	-	-
Aroclor-1248	0.005	mg/L	< 0.005	-	-
Aroclor-1254	0.005	mg/L	< 0.005	-	-
Aroclor-1260	0.005	mg/L	< 0.005	-	-
Total PCB*	0.001	mg/L	< 0.001	-	-
Dibutylchlorendate (surr.)	1	%	INT	-	-
Tetrachloro-m-xylene (surr.)	1	%		-	-
Phenols (Halogenated)					
2-Chlorophenol	0.003	mg/L	< 0.003	-	-
2.4-Dichlorophenol	0.001	mg/L	< 0.001	-	-
2.4.5-Trichlorophenol	0.001	mg/L	< 0.001	-	-
2.4.6-Trichlorophenol	0.01	mg/L	< 0.01	-	-
2.6-Dichlorophenol	0.003	mg/L	< 0.003	-	-
4-Chloro-3-methylphenol	0.01	mg/L	< 0.01	-	-
Pentachlorophenol	0.01	mg/L	< 0.01	-	-
Tetrachlorophenols - Total	0.03	mg/L	< 0.03	-	-
Total Halogenated Phenol*	0.01	mg/L	< 0.01	-	-
Phenols (non-Halogenated)		<u> </u>			
2-Cyclohexyl-4.6-dinitrophenol	0.1	mg/L	< 0.1	-	-
2-Methyl-4.6-dinitrophenol	0.005	mg/L	< 0.005	-	-
2-Methylphenol (o-Cresol)	0.003	mg/L	< 0.003	-	-
2-Nitrophenol	0.005	mg/L	< 0.005	-	-
2.4-Dimethylphenol	0.001	mg/L	< 0.001	-	-
2.4-Dinitrophenol	0.001	mg/L	< 0.001	-	-
3&4-Methylphenol (m&p-Cresol)	0.006	mg/L	< 0.006	-	-
4-Nitrophenol	0.001	mg/L	< 0.001	-	-
Dinoseb	0.1	mg/L	< 0.1	-	-
Phenol Total Non-Hologopated Phenol*	0.003	mg/L	< 0.003	-	-
Total Non-Halogenated Phenol*	0.1	mg/L	< 0.1	-	-
Phenol-d6 (surr.) Total Recoverable Hydrocarbons - 2013 NEPM	Eractions	%	INT	-	-
,		n	0.05		
TRH >C10-C16	0.05	mg/L	< 0.05	-	-
TRH > C24 C40	0.1	mg/L	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	-	-
Heavy Metals	0.004	n	0.001		
Arsenic	0.001	mg/L	< 0.001	-	-
Chromium	0.0002	mg/L	< 0.0002	-	-
Chromium	0.001	mg/L	< 0.001	-	-
Copper	0.001	mg/L	0.002	-	-
Lead	0.001	mg/L	< 0.001	-	-
Mercury	0.0001	mg/L	< 0.0001	-	-
Nickel	0.001 0.005	mg/L mg/L	< 0.001 < 0.005	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Passycrable Undraggraphs 4000 NEDM Fractions	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: TRH C6-C36 - LTM-ORG-2010	Sydney	May 01, 2017	7 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 28, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 01, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010 BTEX	Sydney	Apr 28, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010	Cydnoy	7,01 20, 2017	14 Day
Polycyclic Aromatic Hydrocarbons - Method: E007 Polyaromatic Hydrocarbons (PAH)	Sydney	May 01, 2017	7 Day
Polychlorinated Biphenyls	Sydney	May 01, 2017	7 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water Metals M8	Sydney	May 03, 2017	28 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS	Contant	May 05, 2047	0.00
Phenols (Halogenated) Phenols (non-Halogenated)	Sydney Sydney	May 05, 2017 May 05, 2017	0 Day 0 Day

; I L	II Laboratory -	NATA SILE # 102	. 1 /														
te	rnal Laboratory	у															
o	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
=	BH02_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23236							Х		Х	Х		Х
	BH04_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23237		Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
	BH06_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23238	Х						Х		Х	Х	Х	Х
	BH07_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23239							Х		Х	Х		Х
	BH08_0.2-0.3	Apr 28, 2017		Soil	S17-Ap23240							Х		Х	Х		Х
	BH09_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23241		Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
	BH10_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23242		Х	Х	Х	Х	Х	Х	Х	Х	Х	201;	Х
	QA120170428	Apr 28, 2017		Soil	S17-Ap23243							Х		Х	Х	.05,	Х
	RB20170428	Apr 28, 2017		Water	S17-Ap23244			Х			Х	Х	Х	Х		Мау	Х
																Date Reported	
	I															De	

Com pany
Address:

Address JBS & G Australia (NSW) P/L Level 1, 50 Margaret St

Sydney NSW 2000

MITCHELL STREET ENFIELD DSI

52680

Order No.: Received: Apr 28, 2017 5:02 PM

Report #: May 5, 2017 544088 Due: 5 Day Seth Molinari Phone: 02 8245 0300 Priority: Contact Name: Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

ABN-50 005 085 521 Pho e.mail: EnviroSales@eurofins.com NAT web: www.eurofins.com.au Site		San	nple Detail		% Clay	Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	Phenols (IWRG 621)	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
elbo	urne Laborate	ory - NATA Site #	‡ 1254 & 14271													Х	
dn	y Laboratory	- NATA Site # 18	217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
isb	ne Laborator	y - NATA Site # 2	20794		Х												
rth	Laboratory - I	NATA Site # 1821	17														
	B20170428	Apr 28, 2017	Water	S17-Ap23245										Х			
70	S20170428	Apr 28, 2017	Water	S17-Ap23246										Х			
<u> </u>	H02_0.1-0.2	Apr 28, 2017	Soil	S17-Ap23247			Х										
	BH02_0.3-0.4	Apr 28, 2017	Soil	S17-Ap23248			Х										
	BH02_0.9-1.0	Apr 28, 2017	Soil	S17-Ap23249			Х										
	BH04_0.1-0.2	Apr 28, 2017	Soil	S17-Ap23250			Х										
	H04_0.9-1.0	Apr 28, 2017	Soil	S17-Ap23251			Х										
	H06_0.1-0.2	Apr 28, 2017	Soil	S17-Ap23252			Х										
	H06_0.4-0.5	Apr 28, 2017	Soil	S17-Ap23253			Х										
	BH06_1.1-1.2	Apr 28, 2017	Soil	S17-Ap23254			Х										
	H07_0.0-0.1	Apr 28, 2017	Soil	S17-Ap23255			Х										
	H07_0.6-0.7	Apr 28, 2017	Soil	S17-Ap23256			Х										

Com pany Address: Add JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

MITCHELL STREET ENFIELD DSI

52680

Order No.: Report #: Phone:

Fax:

544088

02 8245 0300

Received: Apr 28, 2017 5:02 PM

May 5, 2017 Due: 5 Day Seth Molinari Priority: Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

ABN 50 005 085 521 Pho			Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	Phenols (IWRG 621)	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
el	bc	urne Laborato	ory - NATA Site	# 1254 & 142	71													Х	
10	lne	y Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ
is	sb	ne Laborator	y - NATA Site #	20794			Х												
r	th	Laboratory - N	NATA Site # 182	17															
_		H08_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23257			Х										
- 0		H08_0.4-0.5	Apr 28, 2017		Soil	S17-Ap23258			Х										
<u></u>		H08_0.9-1.0	Apr 28, 2017		Soil	S17-Ap23259			Х										
- [H09_0.0-0.1	Apr 28, 2017		Soil	S17-Ap23260			Х										
- [H09_0.3-0.4	Apr 28, 2017		Soil	S17-Ap23261			Х										
S	t (ounts					1	3	15	4	3	3	4	9	4	11	8	1	9

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	ctions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/L	< 0.005	0.005	Pass	
Aroclor-1221	mg/L	< 0.001	0.001	Pass	
Aroclor-1232	mg/L	< 0.005	0.005	Pass	
Aroclor-1242	mg/L	< 0.005	0.005	Pass	
Aroclor-1248	mg/L	< 0.005	0.005	Pass	
Aroclor-1254	mg/L	< 0.005	0.005	Pass	
Aroclor-1260	mg/L	< 0.005	0.005	Pass	
Total PCB*	mg/L	< 0.001	0.001	Pass	
Method Blank	, ,				
Phenols (Halogenated)					
2-Chlorophenol	mg/L	< 0.003	0.003	Pass	
2.4-Dichlorophenol	mg/L	< 0.001	0.001	Pass	
2.4.5-Trichlorophenol	mg/L	< 0.001	0.001	Pass	
2.4.6-Trichlorophenol	mg/L	< 0.01	0.01	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
2.6-Dichlorophenol	mg/L	< 0.003	0.003	Pass	
4-Chloro-3-methylphenol	mg/L	< 0.01	0.01	Pass	
Pentachlorophenol	mg/L	< 0.01	0.01	Pass	
Tetrachlorophenols - Total	mg/L	< 0.03	0.03	Pass	
Method Blank					
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	mg/L	< 0.1	0.1	Pass	
2-Methyl-4.6-dinitrophenol	mg/L	< 0.005	0.005	Pass	
2-Methylphenol (o-Cresol)	mg/L	< 0.003	0.003	Pass	
2-Nitrophenol	mg/L	< 0.005	0.005	Pass	
2.4-Dimethylphenol	mg/L	< 0.001	0.001	Pass	
2.4-Dinitrophenol	mg/L	< 0.001	0.001	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/L	< 0.006	0.006	Pass	
4-Nitrophenol	mg/L	< 0.001	0.001	Pass	
Dinoseb	mg/L	< 0.1	0.1	Pass	
Phenol	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	_				
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	95	70-130	Pass	
TRH C10-C14	%	83	70-130	Pass	
LCS - % Recovery					
BTEX	,				
Benzene	%	94	70-130	Pass	
Toluene	%	90	70-130	Pass	
Ethylbenzene	%	91	70-130	Pass	
m&p-Xylenes	%	94	70-130	Pass	
o-Xylene	%	93	70-130	Pass	
Xylenes - Total	%	93	70-130	Pass	├
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	1			1	
Naphthalene	%	88	70-130	Pass	
TRH C6-C10	%	92	70-130	Pass	├
LCS - % Recovery		1			
Polycyclic Aromatic Hydrocarbons	1			1	
Acenaphthene	%	81	70-130	Pass	
Acenaphthylene	%	78	70-130	Pass	
Anthracene	%	86	70-130	Pass	
Benz(a)anthracene	%	90	70-130	Pass	
Benzo(a)pyrene	%	93	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene			%	77		70-130	Pass	
Benzo(g.h.i)perylene			%	80		70-130	Pass	
Benzo(k)fluoranthene			%	80		70-130	Pass	
Chrysene			%	93		70-130	Pass	
Dibenz(a.h)anthracene			%	79		70-130	Pass	
Fluoranthene			%	84		70-130	Pass	
Fluorene			%	80		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	82		70-130	Pass	
Naphthalene			%	84		70-130	Pass	
Phenanthrene			%	90		70-130	Pass	
Pyrene			%	85		70-130	Pass	
LCS - % Recovery								
Phenols (Halogenated)								
2-Chlorophenol			%	107		30-130	Pass	
2.4-Dichlorophenol			%	118		30-130	Pass	
2.4.5-Trichlorophenol			%	51		30-130	Pass	
2.4.6-Trichlorophenol			//	50		30-130	Pass	
2.6-Dichlorophenol			<u> </u>	112		30-130	Pass	
4-Chloro-3-methylphenol			%	47		30-130	Pass	
Pentachlorophenol			% %	46		30-130	Pass	
Tetrachlorophenols - Total			<u>%</u> %	48		30-130	Pass	
			7 0	40		30-130	Pass	
LCS - % Recovery				T				
Phenois (non-Halogenated)			0/	50		20.420	Dana	
2-Cyclohexyl-4.6-dinitrophenol			%	50		30-130	Pass	
2-Methyl-4.6-dinitrophenol			%	31		30-130	Pass	
2-Methylphenol (o-Cresol)			%	91		30-130	Pass	
2-Nitrophenol			%	62		30-130	Pass	
2.4-Dimethylphenol			%	103		30-130	Pass	
2.4-Dinitrophenol			%	32		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	78		30-130	Pass	
4-Nitrophenol			%	32		30-130	Pass	
Dinoseb			%	54		30-130	Pass	
Phenol			%	35		30-130	Pass	
LCS - % Recovery				T	1	I	Ι	
Total Recoverable Hydrocarbons	· 2013 NEPM Fract	ions						
TRH >C10-C16			%	95		70-130	Pass	
LCS - % Recovery					1	T .		
Heavy Metals		ı						
Arsenic			%	86		70-130	Pass	
Cadmium			%	86		70-130	Pass	
Chromium			%	83		70-130	Pass	
Copper			%	86		70-130	Pass	
Lead			%	98		70-130	Pass	
Mercury			%	92		70-130	Pass	
Nickel			%	85		70-130	Pass	
Zinc			%	84		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S17-Ap23244	CP	%	98		70-130	Pass	
TRH C10-C14	S17-Ap22581	NCP	%	116		70-130	Pass	
Spike - % Recovery								
ВТЕХ				Result 1				
Benzene	S17-Ap23244	СР	%	98		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Toluene	S17-Ap23244	CP	%	92	70-130	Pass	
Ethylbenzene	S17-Ap23244	CP	%	96	70-130	Pass	
m&p-Xylenes	S17-Ap23244	CP	%	97	70-130	Pass	
o-Xylene	S17-Ap23244	CP	%	98	70-130	Pass	
Xylenes - Total	S17-Ap23244	CP	%	97	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1			
Naphthalene	S17-Ap23244	СР	%	90	70-130	Pass	
TRH C6-C10	S17-Ap23244	СР	%	95	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbor	ıs			Result 1			
Acenaphthene	S17-Ap23147	NCP	%	77	70-130	Pass	
Anthracene	S17-Ap23147	NCP	%	77	70-130	Pass	
Benz(a)anthracene	S17-Ap23147	NCP	%	82	70-130	Pass	
Benzo(a)pyrene	S17-Ap23147	NCP	%	82	70-130	Pass	
Benzo(g.h.i)perylene	S17-Ap23147	NCP	%	72	70-130	Pass	
Benzo(k)fluoranthene	S17-Ap23147	NCP	%	72	70-130	Pass	
Chrysene	S17-Ap23147	NCP	%	84	70-130	Pass	
Dibenz(a.h)anthracene	S17-Ap23147	NCP	%	72	70-130	Pass	
Fluoranthene	S17-Ap23147	NCP	%	83	70-130	Pass	
Fluorene	S17-Ap23147	NCP	%	76	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S17-Ap23147	NCP	%	72	70-130	Pass	
Naphthalene	S17-Ap23147	NCP	%	80	70-130	Pass	
Phenanthrene	S17-Ap23147	NCP	%	82	70-130	Pass	
Pyrene	S17-Ap23147	NCP	%	79	70-130	Pass	
Spike - % Recovery	1 017 Ap20147	1401	70	7.5	70 100	1 455	
Phenois (Halogenated)				Result 1			
2-Chlorophenol	S17-Ap23147	NCP	%	71	30-130	Pass	
2.4-Dichlorophenol	S17-Ap23147	NCP	%	69	30-130	Pass	
2.6-Dichlorophenol	S17-Ap23147	NCP	%	53	30-130	Pass	
4-Chloro-3-methylphenol	S17-Ap23147	NCP	%	32	30-130	Pass	
Spike - % Recovery	317-Ap23147	INCF	/0	32	30-130	Fass	
Phenois (non-Halogenated)				Result 1			
2-Methylphenol (o-Cresol)	S17-Ap23147	NCP	%	64	30-130	Pass	
` '		NCP	%	40		Pass	
2-Nitrophenol 2.4-Dimethylphenol	S17-Ap23147	NCP	%	74	30-130 30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	S17-Ap23147	NCP	%	56	30-130		
Spike - % Recovery	S17-Ap23147	INCF	70] 36]	30-130	Pass	
Total Recoverable Hydrocarbons	2012 NEDM Eroot	ione		Result 1			
TRH >C10-C16		NCP	%	125	70-130	Pass	
Spike - % Recovery	S17-Ap22581	INCF	70	123	70-130	Fass	
Heavy Metals				Result 1			
	C17 Ap21104	NCD	0/		70 120	Door	
Arsenic	S17-Ap21184	NCP	%	88	70-130	Pass	
Chromium	S17-Ap21184	NCP	%	89	70-130	Pass	
Conner	S17-Ap21184	NCP	%	83	70-130	Pass	
Copper	S17-Ap21184	NCP	%	79	70-130	Pass	
Lead	S17-Ap21184	NCP	%	94	70-130	Pass	
Mercury	S17-Ap21184	NCP	%	88	70-130	Pass	
Nickel	S17-Ap21184	NCP	%	79	70-130	Pass	
Zinc	S17-Ap21184	NCP	%	74	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	'								
Total Recoverable Hydrocarbons	· 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S17-Ap23185	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S17-Ap22579	NCP	mg/L	4.1	4.0	4.0	30%	Pass	
TRH C15-C28	S17-Ap22579	NCP	mg/L	1.6	1.5	9.0	30%	Pass	
TRH C29-C36	S17-Ap22579	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate			J						
BTEX				Result 1	Result 2	RPD			
Benzene	S17-Ap23185	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S17-Ap23185	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S17-Ap23185	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S17-Ap23185	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S17-Ap23185	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S17-Ap23185	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate	07.020.00		g, <u>_</u>	1 0.000	1 0.000		0070		
Total Recoverable Hydrocarbons	· 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S17-Ap23185	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S17-Ap23185	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate	1 017 Ap20100	1101	mg/L	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 0.02		3070	1 455	
Polycyclic Aromatic Hydrocarbons	s			Result 1	Result 2	RPD			
Acenaphthene	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&i)fluoranthene	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S17-Ap23146	NCP		< 0.001	< 0.001	<1	30%	Pass	
	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<u><1</u>	30%	Pass	
Chrysene Dibenz(a.h)anthracene	1	NCP	mg/L	< 0.001	< 0.001	<u><1</u>	30%	Pass	
Fluoranthene	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<u><1</u>	30%	Pass	
	S17-Ap23146		mg/L						
Fluorene Indeno(1.2.3-cd)pyrene	S17-Ap23146	NCP NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	S17-Ap23146		mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate Dhanels (Helegansted)				Dogult 1	Decult 2	DDD			
Phenois (Halogenated)	C17 Ap 221 46	NCD		Result 1	Result 2	RPD -1	200/	Door	
2-Chlorophenol	S17-Ap23146	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2.4-Dichlorophenol	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2.4.5-Trichlorophenol	S17-Ap23146	NCP	mg/L		< 0.001	<1	30%	Pass	
2.4.6-Trichlorophenol	S17-Ap23146	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
2.6-Dichlorophenol	S17-Ap23146	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
4-Chloro-3-methylphenol	S17-Ap23146	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Pentachlorophenol Tetrachlorophenol	S17-Ap23146	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Tetrachlorophenols - Total	S17-Ap23146	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
Duplicate Phonols (non Hologopated)				Dogult 4	Dogult 0	DDD			
Phenols (non-Halogenated)	C17 A=204.40	NOD	m ~ /!	Result 1	Result 2	RPD	200/	Doc-	
2-Cyclohexyl-4.6-dinitrophenol	S17-Ap23146	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	S17-Ap23146	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S17-Ap23146	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2-Nitrophenol	S17-Ap23146	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
2.4-Dimethylphenol	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2.4-Dinitrophenol	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Duplicate									
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
3&4-Methylphenol (m&p-Cresol)	S17-Ap23146	NCP	mg/L	< 0.006	< 0.006	<1	30%	Pass	
4-Nitrophenol	S17-Ap23146	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dinoseb	S17-Ap23146	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Phenol	S17-Ap23146	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S17-Ap22579	NCP	mg/L	2.9	2.7	5.0	30%	Pass	
TRH >C16-C34	S17-Ap22579	NCP	mg/L	1.3	1.3	2.0	30%	Pass	
TRH >C34-C40	S17-Ap22579	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S17-Ap18983	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S17-Ap21287	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S17-Ap21287	NCP	mg/L	0.006	0.007	3.0	30%	Pass	
Copper	S17-Ma25699	NCP	mg/L	0.001	0.001	18	30%	Pass	
Lead	S17-Ap22912	NCP	mg/L	0.002	0.001	18	30%	Pass	
Mercury	S17-Ap18983	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S17-Ap21287	NCP	mg/L	0.003	0.002	2.0	30%	Pass	
Zinc	M17-Ap18070	NCP	mg/L	0.008	< 0.005	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Nibha Vaidya Analytical Services Manager Rvan Hamilton Senior Analyst-Metal (NSW) Ryan Hamilton Senior Analyst-Organic (NSW) Ryan Hamilton Senior Analyst-Volatile (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins; Ingt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins; Img be liable for consequential damages including, but not limited to, lost profits, damages for indiative to meet deadlines and lost production arising from this report. This document shall be reproducted except in full and relates only to the tiens tested. Unless indicated otherwise, the testes were performed on the samples as received.

012473

CHAIN OF CUSTODY

PROJECT NO.: \$2680				LABORATORY BATCH NO.:																	
PROJECT NAME: Enheld	100					SAMPLERS: NWELL)															
DATE NEEDED BY: Std 1	MT					QC	LE	VEL:	NEF	M (201	l3)										
PHONE: Sydney: 02 8245 030		8 9488 0:	100 Brisba	ne: 07 3112 2688																	
SEND REPORT & INVOICE TO:	(1) adminn	sw@jbsg	.com.au; (2)	5 Molinari @jb	g.com.	au; (3)	N.	WE	115		@j	osg.co	m.au							
COMMENTS / SPECIAL HANDLING / STORA	AGE OR DISPOSA	L:		1,412		7						\top						TYPE OF	F OS		
						Havy metal				5/0								ANALYS	ils		_
						0				0								IDENTIFICATION	5	4630	69
						a M	TRH	87ex	HHU	Men								HE I	NOTE:		,
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pH	_	_			_		$\downarrow \downarrow \downarrow$			$\downarrow \downarrow$		+	2	NOTE	S:	
MMO(-01	Marc	1615		bottles trughtile		-			-	×					\perp		\perp		\perp		
MM05-01						X	\times	×		X											
MW03-01							×	_	\rightarrow	X											
MW04-01						X	X	×	×	X											
TB 20170516								X													
TJ 20170516				V				X													
-		V		*								T								_	·
												11									
												11							1		
				=																	
				·																	-
												11				\top					
																			1		
																				_	
					1							\dagger			+		11	+			
					+											\top			\top		
RELINQUISHED BY			-	METHOD OF SHIPMENT:						CEIVED B						FOI	R RECEIV	/ING LA	S USE ONL	Y:	î î
NAME: NWLLU DATE:	11.10	CON	SIGNMENT NO	TE NO.					inso	Taros	5		CC	OLER S	EAL - Y	'es	No	. Intac	t Bro	ken	#
OF: JBS&G	16/5/201	TRAI	NSPORT CO.			OF	ATE:	161	15/17 MG	- 1	7:5	7	CC	OLER T	EMP	dea	С				
NAME: DATE:		711711	SIGNMENT NO	TE NO.	-		ME:				DATE	:						Intac	t Br	oken	
OF:		TOAL	NSPORT CO			OF	:						CC	OLED T	CLAD	u.I.					
	stic; J = Soil Jar;			d Prsvd.; C = Sodium Hydroxide Prsvd; VC =	Hydrochlor	ic Aci	d Prs	/d Via	al; VS =	Sulfuric A	cid Prsv	d Vial; S	= Sulfurio	OLER T	ervi?	aeg Zinc Prs	vd; E = ED	OTA Prsvd	; ST = Sterile	Bottle; O =	Other

IMSO FormsO13 - Chain of Custody - Generic

Enviro Sample NSW

From: Nicola Wells <NWells@jbsg.com.au>

Sent: Seth Molinari; Enviro Sample NSW Wednesday, 17 May 2017 9:49 AM

Subject: RE: Eurofins mgt Sample Receipt Advice - Report 546369 : Site ENFIELD DD

(52680)

Follow Up Flag: Follow up

Flag Status: Flagged

Hi Vinod,

and phenols). Could we please schedule sample QA1 for the same analysis as other samples (heavy metals,trh,btex,pah

Kind Regards

Nicola

Sent from my Sony Xperia™ smartphone

EnviroSampleNSW@eurofins.com wrote --

Dear Valued Client,

Extra sample received: QA1, logged on hold

such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers of-Custody (COC). It is important that you check this documentation to ensure that the details are correct Analytical Services Manager as soon as possible to make certain that they get changed. as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-

Regards

Vinod Jacob

Sample Receipt

Unit F3, Parkview Building Eurofins | mgt

16 Mars Road

LANE COVE WEST NSW 2066

AUSTRALIA

Phone: +61 29900 8492

Email: EnviroSampleNSW@eurofins.com

Website: environment.eurofins.com.au

EnviroNote 1071 - QSM 5.1

EnviroNote 1069 - Eurofins Overnight TAT

17/5 VL

Melbourne

Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

JBS & G Australia (NSW) P/L Company name:

Contact name: Seth Molinari Project name: ENFIELD DD

Project ID: 52680

COC number: Not provided

Turn around time: 5 Day

May 16, 2017 5:29 PM Date/Time received:

Eurofins | mgt reference: 546369

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 12.5 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \square All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- XSome samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Extra sample received: QA1, logged on hold.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Seth Molinari - SMolinari@jbsg.com.au.

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St

Sydney NSW 2000

Com pany
Address:

Address ENFIELD DD

52680

Order No.:

Report #: 546369 Phone: 02 8245 0300

Fax:

Received: May 16, 2017 5:29 PM May 23, 2017 Due:

Priority: 5 Day Contact Name: Seth Molinari

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	74-									
ABN-50 005 085 521 Pho e.mail: EnviroSales@eurofins.com NAT		Sa	mple Detail			Polycyclic Aromatic Hydrocarbons	Metals M8 filtered	Phenols (IWRG 621)	втех	Total Recoverable Hydrocarbons
əlk	bourne Labora	atory - NATA Site								
rd	ney Laborator	y - NATA Site # 1	8217			Х	Х	Х	Х	Х
is	bane Laborat	ne Laboratory - NATA Site # 20794								
ert	h Laboratory	- NATA Site # 182	217							
ite	erral Laborato	ory								
o St	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
E_	MW01-01	May 16, 2017		Water	S17-My15744	Х	Х	Х	Х	Х
	MW02-01	May 16, 2017		Water	S17-My15745	Х	Х	Х	Х	Х
	MW03-01	May 16, 2017		Water	S17-My15746	Х	Х	Х	Х	Х
	MW04-01	May 16, 2017		Water	S17-My15747	Х	Х	Х	Х	Х
	B20170516	May 16, 2017		Water	S17-My15748				Х	
_	S20170516	May 16, 2017		Water	S17-My15749				Х	
_	QA1	May 16, 2017	Х	Х	Х	Х	Х			
st	t Counts					5	5	5	7	5

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Seth Molinari

546369-W Report ENFIELD DD Project name Project ID 52680 Received Date May 16, 2017

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			MW01-01	MW02-01	MW03-01	MW04-01
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S17-My15744	S17-My15745	S17-My15746	S17-My15747
Date Sampled			May 16, 2017	May 16, 2017	May 16, 2017	May 16, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	0.05	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	0.9	0.5
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	1.1	0.5
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	2	1
ВТЕХ	'	1				
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	99	98	106	102
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	0.05	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	0.05	< 0.02
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			MW01-01	MW02-01	MW03-01	MW04-01
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S17-My15744	S17-My15745	S17-My15746	S17-My15747
Date Sampled			May 16, 2017	May 16, 2017	May 16, 2017	May 16, 2017
•	100	1.1-21	Way 10, 2017	Way 10, 2017	Way 10, 2017	Way 10, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	2 224		2.224	0.004	0.004	2 224
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	78	57	71	72
p-Terphenyl-d14 (surr.)	1	%	64	70	65	69
Phenols (Halogenated)						
2-Chlorophenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
2.4-Dichlorophenol	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2.4.5-Trichlorophenol	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2.4.6-Trichlorophenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
2.6-Dichlorophenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Chloro-3-methylphenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Pentachlorophenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Tetrachlorophenols - Total	0.03	mg/L	< 0.03	< 0.03	< 0.03	< 0.03
Total Halogenated Phenol*	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
2-Methyl-4.6-dinitrophenol	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
2-Methylphenol (o-Cresol)	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
2-Nitrophenol	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
2.4-Dimethylphenol	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2.4-Dinitrophenol	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
3&4-Methylphenol (m&p-Cresol)	0.006	mg/L	< 0.006	< 0.006	< 0.006	< 0.006
4-Nitrophenol	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dinoseb	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Phenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Total Non-Halogenated Phenol*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Phenol-d6 (surr.)	1	%	INT	INT	INT	INT
Total Recoverable Hydrocarbons - 2013 NEPI	M Fractions					
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	2.3	1.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	0.1	< 0.1
Heavy Metals	<u> </u>					
Arsenic (filtered)	0.001	mg/L	< 0.01	< 0.01	0.013	< 0.01
Cadmium (filtered)	0.0002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Chromium (filtered)	0.001	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Copper (filtered)	0.001	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Lead (filtered)	0.001	mg/L	0.010	< 0.01	< 0.01	< 0.01
Mercury (filtered)	0.0001	mg/L	0.0008	< 0.001	< 0.001	< 0.001
	0.001	mg/L	< 0.05			< 0.05
						< 0.05
Nickel (filtered) Zinc (filtered)	0.001 0.005	mg/L mg/L	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	

Report Number: 546369-W

Client Sample ID			TB20170516	TS20170516	QA1
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S17-My15748	S17-My15749	S17-My15754
Date Sampled			May 16, 2017	May 16, 2017	May 16, 2017
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions				
TRH C6-C9	0.02	mg/L	-	-	< 0.02
TRH C10-C14	0.05	mg/L	-	-	< 0.05
TRH C15-C28	0.1	mg/L	-	-	0.2
TRH C29-C36	0.1	mg/L	-	-	0.2
TRH C10-36 (Total)	0.1	mg/L	-	-	0.4
ВТЕХ					
Benzene	0.001	mg/L	< 0.001	102%	< 0.001
Toluene	0.001	mg/L	< 0.001	88%	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	83%	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	90%	< 0.002
o-Xylene	0.001	mg/L	< 0.001	95%	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	92%	< 0.003
4-Bromofluorobenzene (surr.)	1	%	97	106	100
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions				
Naphthalene ^{N02}	0.01	mg/L	-	-	< 0.01
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	-	-	< 0.05
TRH C6-C10	0.02	mg/L	-	_	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	-	_	< 0.02
Polycyclic Aromatic Hydrocarbons		, J			
Acenaphthene	0.001	mg/L	_	-	< 0.001
Acenaphthylene	0.001	mg/L	_	-	< 0.001
Anthracene	0.001	mg/L	_	_	< 0.001
Benz(a)anthracene	0.001	mg/L	_	_	< 0.001
Benzo(a)pyrene	0.001	mg/L	_	_	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	_	_	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	_	-	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	_	_	< 0.001
Chrysene	0.001	mg/L	_	_	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	_	_	< 0.001
Fluoranthene	0.001	mg/L	_	_	< 0.001
Fluorene	0.001	mg/L	_	_	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	_	_	< 0.001
Naphthalene	0.001	mg/L	_	_	< 0.001
Phenanthrene	0.001	mg/L	_	_	< 0.001
Pyrene	0.001	mg/L	_	_	< 0.001
Total PAH*	0.001	mg/L	-	-	< 0.001
2-Fluorobiphenyl (surr.)	1	%	-	-	51
p-Terphenyl-d14 (surr.)	1	%	_	_	53
Phenois (Halogenated)		,,,			
2-Chlorophenol	0.003	mg/L	_	_	< 0.003
2.4-Dichlorophenol	0.003	mg/L	-	-	< 0.003
2.4.5-Trichlorophenol	0.001	mg/L	-	-	< 0.001
2.4.6-Trichlorophenol	0.001	mg/L	-	-	< 0.001
2.6-Dichlorophenol	0.003	mg/L	-	-	< 0.01
4-Chloro-3-methylphenol	0.003	mg/L	-	-	< 0.003
Pentachlorophenol	0.01		-	-	< 0.01
i entacinorophenoi	0.01	mg/L	-	-	
Tetrachlorophenols - Total	0.03	mg/L	-	_	< 0.03

Client Sample ID			TB20170516	TS20170516	QA1
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S17-My15748	S17-My15749	S17-My15754
Date Sampled			May 16, 2017	May 16, 2017	May 16, 2017
Test/Reference	LOR	Unit			
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	0.1	mg/L	-	-	< 0.1
2-Methyl-4.6-dinitrophenol	0.005	mg/L	-	-	< 0.005
2-Methylphenol (o-Cresol)	0.003	mg/L	-	-	< 0.003
2-Nitrophenol	0.005	mg/L	-	-	< 0.005
2.4-Dimethylphenol	0.001	mg/L	-	-	< 0.001
2.4-Dinitrophenol	0.001	mg/L	-	-	< 0.001
3&4-Methylphenol (m&p-Cresol)	0.006	mg/L	-	-	< 0.006
4-Nitrophenol	0.001	mg/L	-	-	< 0.001
Dinoseb	0.1	mg/L	-	-	< 0.1
Phenol	0.003	mg/L	-	-	< 0.003
Total Non-Halogenated Phenol*	0.1	mg/L	-	-	< 0.1
Phenol-d6 (surr.)	1	%	-	-	INT
Total Recoverable Hydrocarbons - 2013 N	EPM Fractions				
TRH >C10-C16	0.05	mg/L	-	-	< 0.05
TRH >C16-C34	0.1	mg/L	-	-	0.5
TRH >C34-C40	0.1	mg/L	-	-	< 0.1
Heavy Metals					
Arsenic (filtered)	0.001	mg/L	-	-	0.002
Cadmium (filtered)	0.0002	mg/L	-	-	< 0.0002
Chromium (filtered)	0.001	mg/L	-	-	< 0.001
Copper (filtered)	0.001	mg/L	-	-	< 0.001
Lead (filtered)	0.001	mg/L	-	-	< 0.001
Mercury (filtered)	0.0001	mg/L	-	-	< 0.0001
Nickel (filtered)	0.001	mg/L	-	-	0.007
Zinc (filtered)	0.005	mg/L	-	-	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted May 22, 2017	Holding Time 7 Day
- Method: TRH C6-C36 - LTM-ORG-2010 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 17, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010 Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: TRH C6-C40 - LTM-ORG-2010	Sydney	May 22, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010 BTEX - Method: TRH C6-C40 - LTM-ORG-2010	Sydney	May 17, 2017	14 Day
Polycyclic Aromatic Hydrocarbons - Method: E007 Polyaromatic Hydrocarbons (PAH)	Sydney	May 22, 2017	7 Day
Metals M8 filtered - Method: LTM-MET-3040 Metals in Waters by ICP-MS	Sydney	May 17, 2017	28 Day
Phenols (Halogenated) Phenols (non-Halogenated)	Sydney Sydney	May 22, 2017 May 22, 2017	0 Day 0 Day

Add	m pany Name: dress:	JBS & G Aus Level 1, 50 M Sydney NSW 2000	stralia (NSW) Margaret St	P/L			Re	der Neport	#:		Section Sect
5 8 5 444 6	iject ID:	ENFIELD DI 52680)								ا میں اور کر ای اور کرد ای ای
Melbour Melbour Melbour Melbour 2-5 King 2-5 King Californ Melbour M	יספונטווופאסוויפת	Sa	ımple Detail			Polycyclic Aromatic Hydrocarbons	Metals M8 filtered	Phenois (IWRG 621)	втех	Total Recoverable Hydrocarbons	Eurolins mgt Unit F3, Building F, 16 Mars Roa
elbe	ourne Laborato	ory - NATA Site	# 1254 & 142	271							
<u>rdn</u>	ey Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	
	ne Laborator										
	Laboratory - N		217								
Eter o o	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
E	MW01-01	May 16, 2017		Water	S17-My15744	Х	Х	Х	Х	Х	
	MW02-01	May 16, 2017		Water	S17-My15745	Х	Х	Х	Х	Х	
	MW03-01	May 16, 2017		Water	S17-My15746	Х	Х	Х	Х	Х	
	MW04-01	May 16, 2017		Water	S17-My15747	Х	Х	Х	Х	Х	
	B20170516	May 16, 2017		Water	S17-My15748				Х		
		May 16, 2017		Water	S17-My15749				Х		
		May 16, 2017		Water	S17-My15754	Х	Х	Х	Х	Х	50
st	Counts					5	5	5	7	5]
:st											Date Reported: May 23, 2017

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Dublicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate

A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE

Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	าร				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank				<u> </u>	
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ns				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		T T		T	
Phenols (Halogenated)				<u> </u>	
2-Chlorophenol	mg/L	< 0.003	0.003	Pass	
2.4-Dichlorophenol	mg/L	< 0.001	0.001	Pass	
2.4.5-Trichlorophenol	mg/L	< 0.001	0.001	Pass	
2.4.6-Trichlorophenol	mg/L	< 0.01	0.01	Pass	
2.6-Dichlorophenol	mg/L	< 0.003	0.003	Pass	
4-Chloro-3-methylphenol	mg/L	< 0.01	0.01	Pass	
Pentachlorophenol	mg/L	< 0.01	0.01	Pass	
Tetrachlorophenols - Total	mg/L	< 0.03	0.03	Pass	
Method Blank Phonolo (non Hologopated)					
Phenols (non-Halogenated)		.01	0.4	Desa	
2-Cyclohexyl-4.6-dinitrophenol	mg/L	< 0.1	0.1	Pass	
2-Methyl-4.6-dinitrophenol	mg/L	< 0.005	0.005	Pass	
2-Methylphenol (o-Cresol)	mg/L	< 0.003	0.003	Pass	
2-Nitrophenol	mg/L	< 0.005	0.005	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
2.4-Dimethylphenol	mg/L	< 0.001	0.001	Pass	
2.4-Dinitrophenol	mg/L	< 0.001	0.001	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/L	< 0.006	0.006	Pass	
4-Nitrophenol	mg/L	< 0.001	0.001	Pass	
Dinoseb	mg/L	< 0.1	0.1	Pass	
Phenol	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	ons				
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery		T 0.005	0.000	1 433	
Total Recoverable Hydrocarbons - 1999 NEPM Fracti	ons				
TRH C6-C9	%	92	70-130	Pass	
TRH C10-C14	%	125	70-130	Pass	
LCS - % Recovery	70	123	10-130	1 033	
BTEX					
Benzene	%	94	70-130	Pass	
Toluene	%	107	70-130	Pass	
	%	107	70-130	Pass	
Ethylbenzene		116			
m&p-Xylenes	%		70-130	Pass	
o-Xylene	%	112	70-130	Pass	
Xylenes - Total	%	115	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fracti		05	70.420	Dana	
Naphthalene	%	95	70-130	Pass	
TRH C6-C10	%	89	70-130	Pass	
LCS - % Recovery		l I	T	I	
Polycyclic Aromatic Hydrocarbons	1			_	
Acenaphthene	%	79	70-130	Pass	
Acenaphthylene	%	91	70-130	Pass	
Anthracene	%	80	70-130	Pass	
Benz(a)anthracene	%	95	70-130	Pass	
Benzo(a)pyrene	%	99	70-130	Pass	
Benzo(b&j)fluoranthene	%	99	70-130	Pass	
Benzo(g.h.i)perylene	%	80	70-130	Pass	
Benzo(k)fluoranthene	%	96	70-130	Pass	
Chrysene	%	87	70-130	Pass	
Dibenz(a.h)anthracene	%	82	70-130	Pass	
Fluoranthene	%	84	70-130	Pass	
Fluorene	%	84	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	77	70-130	Pass	
Naphthalene	%	81	70-130	Pass	
Phenanthrene	%	84	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Pyrene			%	83		70-130	Pass	
LCS - % Recovery								
Phenois (Halogenated)								
2-Chlorophenol			%	73		30-130	Pass	
2.4-Dichlorophenol			%	75		30-130	Pass	
2.4.5-Trichlorophenol			%	39		30-130	Pass	
2.4.6-Trichlorophenol			%	37		30-130	Pass	
2.6-Dichlorophenol			%	80		30-130	Pass	
4-Chloro-3-methylphenol			%	35		30-130	Pass	
Pentachlorophenol			%	38		30-130	Pass	
Tetrachlorophenols - Total			%	33		30-130	Pass	
LCS - % Recovery			/0	33		30-130	1 033	
Phenols (non-Halogenated)								
			%	32		20 120	Pass	
2-Cyclohexyl-4.6-dinitrophenol						30-130		
2-Methylphenol (o-Cresol)			%	66		30-130	Pass	
2-Nitrophenol			%	43		30-130	Pass	
2.4-Dimethylphenol			%	73		30-130	Pass	
2.4-Dinitrophenol			%	110		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	52		30-130	Pass	
Dinoseb			%	38		30-130	Pass	
LCS - % Recovery				T	1			
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
TRH >C10-C16			%	128		70-130	Pass	
LCS - % Recovery				T				
Heavy Metals			ı					
Arsenic (filtered)			%	112		70-130	Pass	
Cadmium (filtered)			%	116		70-130	Pass	
Chromium (filtered)			%	113		70-130	Pass	
Copper (filtered)			%	118		70-130	Pass	
Lead (filtered)			%	110		70-130	Pass	
Mercury (filtered)			%	125		70-130	Pass	
Nickel (filtered)			%	114		70-130	Pass	
Zinc (filtered)			%	114		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		1000.00				2	2	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	P17-My09956	NCP	%	126		70-130	Pass	
Spike - % Recovery	1 17 Wy05550	1401	70	120		70-130	1 433	
BTEX				Result 1				
Benzene	P17-My09956	NCP	%	103		70-130	Pass	
Toluene	P17-My09956	NCP	%	95		70-130	Pass	
		NCP	%	+				
Ethylbenzene	P17-My09956			89		70-130	Pass	
m&p-Xylenes	P17-My09956	NCP	%	99		70-130	Pass	
o-Xylene	P17-My09956	NCP	%	100		70-130	Pass	
Xylenes - Total	P17-My09956	NCP	%	99		70-130	Pass	
Spike - % Recovery	0040 1:==:==			T				
Total Recoverable Hydrocarbons -				Result 1			_	
Naphthalene	P17-My09956	NCP	%	93		70-130	Pass	
TRH C6-C10	P17-My09956	NCP	%	111		70-130	Pass	
Spike - % Recovery				Dogult 1	1 1			1
Spike - % Recovery Polycyclic Aromatic Hydrocarbons	\$	_		Result 1				+
	S17-My09065	NCP	%	71		70-130	Pass	
Polycyclic Aromatic Hydrocarbons		NCP NCP	%			70-130 70-130	Pass Pass	

mgt

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(a)pyrene	S17-My09065	NCP	%	77			70-130	Pass	
Benzo(b&j)fluoranthene	S17-My09065	NCP	%	101			70-130	Pass	
Benzo(k)fluoranthene	S17-My09065	NCP	%	93			70-130	Pass	
Chrysene	S17-My09065	NCP	%	82			70-130	Pass	
Fluoranthene	S17-My09065	NCP	%	74			70-130	Pass	
Fluorene	S17-My09065	NCP	%	76			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S17-My09065	NCP	%	70			70-130	Pass	
Naphthalene	S17-My09065	NCP	%	72			70-130	Pass	
Phenanthrene	S17-My09065	NCP	%	70			70-130	Pass	
Pyrene	S17-My09065	NCP	%	72			70-130	Pass	
Spike - % Recovery				<u> </u>				7 0.00	
Heavy Metals				Result 1					
Arsenic (filtered)	S17-My15745	СР	%	122			70-130	Pass	
Cadmium (filtered)	S17-My15745	CP	%	121			70-130	Pass	
Chromium (filtered)	S17-My15745	CP	%	117			70-130	Pass	
Copper (filtered)	S17-My15745	CP	%	109			70-130	Pass	
Lead (filtered)	S17-My15745	CP	//	115			70-130	Pass	
Mercury (filtered)	S17-My15745	CP	<u> </u>	91			70-130	Pass	
	1 1	CP		i e					
Nickel (filtered)	S17-My15745	1	%	110			70-130	Pass	
Zinc (filtered) Test	S17-My15745	CP QA	%	110			70-130 Acceptance	Pass Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate					1				
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S17-My11859	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S17-My11859	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S17-My11859	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S17-My11859	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S17-My11859	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S17-My11859	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S17-My11859	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S17-My11859	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S17-My11859	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbon	ıs			Result 1	Result 2	RPD			
Acenaphthene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	<u> </u>	NCP		1					
Fluorene	S17-My09064	1 1	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S17-My09064	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	I

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	M17-Fe25409	NCP	mg/L	0.010	0.055	91	30%	Fail	Q15
Chromium (filtered)	S17-My16155	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S17-My16155	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead (filtered)	S17-My16155	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

N02

Nibha Vaidva Analytical Services Manager Ryan Hamilton Senior Analyst-Metal (NSW) Ryan Hamilton Senior Analyst-Organic (NSW) Ryan Hamilton Senior Analyst-Volatile (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Ingit shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential damages including, but not limited to, lost profits, damages for infallate to meet deadlines and lots production arising from this report. This document shall be reported used except in full and retrietates only to the letters tested. Unliess indicated otherwise, the tests were performed on the samples as received.

COC NSW

From: Nibha Vaidya

Sent: Monday, 29 May 2017 11:23 AM

Subject: Enviro Sample NSW; COC NSW; Rupan Virk RE: 1 DAY TAT - FW: Eurofins | mgt Test Results - Report 544088 : Site MITCHELL

STREET ENFIELD DSI (52680)

Sorry report 546369, not 543661

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415

Mobile: +61 499 900 805

: NibhaVaidya@eurofins.com

From: Nibha Vaidya

Sent: Monday, 29 May 2017 11:14 AM

To: Enviro Sample NSW; COC NSW; Rupan Virk

Subject: 1 DAY TAT - FW: Eurofins | mgt Test Results - Report 544088 : Site MITCHELL STREET ENFIELD DSI

Retest without dilutions please - 1 day TAT

Report 544088 - Ap23238 for BTEX and volatile TRH

Report S43661 - My15744, My15745, My15746 and My15747 for M8 filtered

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415

Mobile: +61 499 900 805

Email : NibhaVaidya@eurofins.com

From: Nicola Wells [mailto:NWells@jbsg.com.au]
Sent: Monday, 29 May 2017 10:27 AM
To: Nibha Vaidya

Cc: Seth Molinari

Subject: RE: Eurofins | mgt Test Results - Report 544088 : Site MITCHELL STREET ENFIELD DSI (52680)

Hi Nibha,

they are reported as below the raised LOR. In reviewing the results I've found that the LOR on sample BH06_0.2-0.3 has been raised for a range of analysis (selected TRH, BTEX, naphthalene). This has meant that we do not have actual concentrations of these analytes as

Are you able to re run this sample so that we have reported concentrations of the analytes?

Could you also please also explain the process of raising the LOR and why the sample wasn't re run initially?

Melbourne

Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Nicola Wells

ADDITIONAL - ENFIELD DD Project name:

Project ID: 52680 COC number: Not provided

Turn around time: 1 Day

May 29, 2017 11:23 AM Date/Time received:

Eurofins | mgt reference: 548010

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 15.6 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Retest without dilutions

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Nicola Wells - NWells@jbsg.com.au.

Com pany

Sign of Cose

Company

Sign of Cose

Company

C JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

ADDITIONAL - ENFIELD DD

52680

Order No.:

Report #: 548010 Phone:

Fax:

02 8245 0300

May 30, 2017 Due: Priority: 1 Day

Received:

Contact Name: Nicola Wells

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

May 29, 2017 11:23 AM

	e.mail: EnviroSales@eurofins.com N		Sa	mple Detail			Metals M8 filtered
	elb	urne Laborat	ory - NATA Site	# 1254 & 142	?71		
	dn	ey Laboratory	- NATA Site # 1	8217			Х
	isb	ane Laborator	y - NATA Site #	20794			
			NATA Site # 182	17			
	-	ral Laborator	У		1	1	
	0	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID	
=		MW01-01	Apr 28, 2017		Water	S17-My28380	Х
_		MW02-01	Apr 28, 2017		Water	S17-My28381	Х
	ightharpoonup	MW03-01	Apr 28, 2017		Water	S17-My28382	Х
		MW04-01	Apr 28, 2017		Water	S17-My28383	Х
	st	Counts					4

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Nicola Wells

Report 548010-W

Project name ADDITIONAL - ENFIELD DD

Project ID 52680

Received Date May 29, 2017

Client Sample ID Sample Matrix			MW01-01 Water	MW02-01 Water	MW03-01 Water	MW04-01 Water
Eurofins mgt Sample No.			S17-My28380	S17-My28381	S17-My28382	S17-My28383
Date Sampled			Apr 28, 2017	Apr 28, 2017	Apr 28, 2017	Apr 28, 2017
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.001	0.008	0.019	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	0.003	0.001	0.001
Lead (filtered)	0.001	mg/L	0.003	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.006	0.011	0.023	0.002
Zinc (filtered)	0.005	mg/L	0.084	0.015	0.015	0.010

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeMetals M8 filteredSydneyMay 29, 201728 Day

- Method: LTM-MET-3040 Metals in Waters by ICP-MS

Sample Detail Sample Detai
Matrix Sample ID Sample Date Sampling Matrix LAB ID
Matrix Sample ID Sample Date Sampling Matrix LAB ID
isbane Laboratory - NATA Site # 20794
Sample ID Sample Date Sampling Matrix LAB ID
Sample ID Sample Date Sampling Matrix LAB ID MW01-01 Apr 28, 2017 Water S17-My28380 X MW02-01 Apr 28, 2017 Water S17-My28381 X MW03-01 Apr 28, 2017 Water S17-My28382 X MW03-01 Apr 28, 2017 W
Sample ID Sample Date Sampling Matrix LAB ID MW01-01 Apr 28, 2017 Water S17-My28380 X MW02-01 Apr 28, 2017 Water S17-My28381 X MW03-01 Apr 28, 2017 Water S17-My28382 X MW03-01 Apr 28, 2017 Water MW03-01 Apr 28, 201
MW01-01 Apr 28, 2017 Water S17-My28380 X MW02-01 Apr 28, 2017 Water S17-My28381 X MW03-01 Apr 28, 2017 Water S17-My28382 X MW03-01 Apr 28, 2017
MW03-01 Apr 28, 2017 Water S17-My28382 X
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
est Q ounts

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Dublicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate

A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE

Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

Report Number: 548010-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	

Report Number: 548010-W

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Nibha Vaidya Analytical Services Manager Ryan Hamilton Senior Analyst-Metal (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgl be liable for consequential clause, and the initiated to, lost profits, damages for relative to meet deadlines and lost production arising from this report. This document shall be reported used except in full and relates only to the tiens tested. Unless indicated otherwises, the tests were performed on the samples as received.

Report Number: 548010-W

COC NSW

From:

Nibha Vaidya

Sent:

Monday, 29 May 2017 11:23 AM

To:

Enviro Sample NSW; COC NSW; Rupan Virk

Subject:

RE: 1 DAY TAT - FW: Eurofins | mgt Test Results - Report 544088 : Site MITCHELL

STREET ENFIELD DSI (52680)

Sorry report 546369, not 543661

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email: NibhaVaidya@eurofins.com

From: Nibha Vaidya

Sent: Monday, 29 May 2017 11:14 AM

To: Enviro Sample NSW; COC NSW; Rupan Virk

Subject: 1 DAY TAT - FW: Eurofins | mgt Test Results - Report 544088 : Site MITCHELL STREET ENFIELD DSI

(52680)

Retest without dilutions please - 1 day TAT

Report 544088 - Ap23238 for BTEX and volatile TRH

Report 543661 - My15744, My15745, My15746 and My15747 for M8 filtered

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email: NibhaVaidya@eurofins.com

From: Nicola Wells [mailto:NWells@jbsq.com.au]

Sent: Monday, 29 May 2017 10:27 AM

To: Nibha Vaidya Cc: Seth Molinari

Subject: RE: Eurofins | mgt Test Results - Report 544088 : Site MITCHELL STREET ENFIELD DSI (52680)

Hi Nibha,

In reviewing the results I've found that the LOR on sample 8H06 0.2-0.3 has been raised for a range of analysis (selected TRH, BTEX, naphthalene). This has meant that we do not have actual concentrations of these analytes as they are reported as below the raised LOR.

Are you able to re run this sample so that we have reported concentrations of the analytes?

Could you also please also explain the process of raising the LOR and why the sample wasn't re run initially?

COC NSW

From:

Nibha Vaidya

Sent:

Monday, 29 May 2017 11:23 AM

To:

Enviro Sample NSW; COC NSW; Rupan Virk

Subject:

RE: 1 DAY TAT - FW: Eurofins | mgt Test Results - Report 544088 : Site MITCHELL

STREET ENFIELD DSI (52680)

Sorry report 546369, not 543661

Kind Regards,

Nibha Vaidva

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email: NibhaVaidya@eurofins.com

From: Nibha Vaidya

Sent: Monday, 29 May 2017 11:14 AM

To: Enviro Sample NSW; COC NSW; Rupan Virk

Subject: 1 DAY TAT - FW: Eurofins | mgt Test Results - Report 544088 : Site MITCHELL STREET ENFIELD DSI

(52680)

Retest without dilutions please - 1 day TAT

Report 544088 - Ap23238 for BTEX and volatile TRH

Report 543661 - My15744, My15745, My15746 and My15747 for M8 filtered

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email: NibhaVaidya@eurofins.com

From: Nicola Wells [mailto:NWells@jbsq.com.au]

Sent: Monday, 29 May 2017 10:27 AM

To: Nibha Vaidya Cc: Seth Molinari

Subject: RE: Eurofins | mgt Test Results - Report 544088 : Site MITCHELL STREET ENFIELD DSI (52680)

Hi Nibha,

In reviewing the results I've found that the LOR on sample BH06_0.2-0.3 has been raised for a range of analysis (selected TRH, BTEX, naphthalene). This has meant that we do not have actual concentrations of these analytes as they are reported as below the raised LOR.

Are you able to re run this sample so that we have reported concentrations of the analytes?

Could you also please also explain the process of raising the LOR and why the sample wasn't re run initially?

29/5 UL

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Nicola Wells

ADDITIONAL - MITCHELL STREET ENFIELD DSI Project name:

Project ID: COC number: Not provided

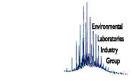
Turn around time: 1 Day

May 29, 2017 11:23 AM Date/Time received:

Eurofins | mgt reference: 548234

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 15.6 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A


Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Nicola Wells - NWells@jbsg.com.au.

Com pany
Address:

Address JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

ADDITIONAL - MITCHELL STREET ENFIELD DSI

52680

Order No.: Report #:

548234

Phone: 02 8245 0300

Fax:

Received: Due:

May 29, 2017 11:23 AM

May 30, 2017 Priority: 1 Day

Contact Name: Nicola Wells

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

$\overline{}$	_									
	e.mail: EnviroSales@eurofins.com NAT web: www.eurofins.com.au		Sa	mple Detail			BTEX and Volatile TRH			
	elbo	urne Laborato	ory - NATA Site	# 1254 & 142	71					
	dne	y Laboratory	- NATA Site # 1	8217			Х			
			y - NATA Site #							
	rth	Laboratory - N	IATA Site # 182	17						
	ter	rual Laboratory								
mgt	0	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
		BH06_0.2-0.3	Apr 28, 2017		Soil	S17-My28379	Х			
	st (ounts					1			

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Nicola Wells

Report 548234-S-V2

Project name ADDITIONAL - MITCHELL STREET ENFIELD DSI

Project ID 52680

Received Date May 29, 2017

Client Sample ID Sample Matrix Eurofins mgt Sample No.			BH06_0.2-0.3 Soil S17-My28379
Date Sampled			Apr 28, 2017
Test/Reference	LOR	Unit	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20
Total Recoverable Hydrocarbons - 1999 NE	PM Fractions		
TRH C6-C9	20	mg/kg	< 20
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	60
Total Recoverable Hydrocarbons - 2013 NE	PM Fractions		
TRH C6-C10	20	mg/kg	< 20
Volatile Organics			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description TRH C6-C10 less BTEX (F1)	Testing Site Sydney	Extracted Jun 02, 2017	Holding Time 14 Day
- Method: LM-LTM-ORG-2010 Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: TRH C6-C36 - LTM-ORG-2010	Sydney	May 29, 2017	14 Day
BTEX - Method: TRH C6-C40 - LTM-ORG-2010	Sydney	May 29, 2017	14 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: TRH C6-C40 - LTM-ORG-2010	Sydney	Jun 02, 2017	14 Day
Volatile Organics	Sydney	Jun 02, 2017	7 Days

⁻ Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Dublicate

A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate

A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE

Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.
 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1	Acceptanc Limits	Pass Limits	Qualifying Code
Method Blank							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions					
TRH C6-C9			mg/kg	< 20	20	Pass	
Method Blank							
BTEX							
Benzene			mg/kg	< 0.1	0.1	Pass	
Toluene			mg/kg	< 0.1	0.1	Pass	
Ethylbenzene			mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes			mg/kg	< 0.2	0.2	Pass	
o-Xylene			mg/kg	< 0.1	0.1	Pass	
Xylenes - Total			mg/kg	< 0.3	0.3	Pass	
Method Blank							
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions					
TRH C6-C10			mg/kg	< 20	20	Pass	
Method Blank							
Volatile Organics			1				
Naphthalene			mg/kg	< 0.5	0.5	Pass	
LCS - % Recovery							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions					
TRH C6-C9			%	103	70-130	Pass	
LCS - % Recovery							
ВТЕХ							
Benzene			%	98	70-130	Pass	
Toluene			%	99	70-130	Pass	
Ethylbenzene			%	102	70-130	Pass	
m&p-Xylenes			%	101	70-130	Pass	
o-Xylene			%	100	70-130	Pass	
Xylenes - Total			%	101	70-130	Pass	
LCS - % Recovery							
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions					
TRH C6-C10			%	101	70-130	Pass	
LCS - % Recovery							
Volatile Organics							
Naphthalene			%	111	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptanc Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons -			1	Result 1			
TRH C6-C9	S17-My24316	NCP	%	95	70-130	Pass	
Spike - % Recovery				1		1	
ВТЕХ		1	1	Result 1			
Benzene	S17-My24316	NCP	%	86	70-130	Pass	
Toluene	S17-My24316	NCP	%	87	70-130	Pass	
Ethylbenzene	S17-My24316	NCP	%	90	70-130	Pass	
m&p-Xylenes	S17-My24316	NCP	%	89	70-130	Pass	
o-Xylene	S17-My24316	NCP	%	89	70-130	Pass	
Xylenes - Total	S17-My24316	NCP	%	89	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons -			1	Result 1			
TRH C6-C10	S17-My24316	NCP	%	94	70-130	Pass	
Spike - % Recovery							
Volatile Organics	_	1	1	Result 1			
Naphthalene	S17-My24316	NCP	%	93	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S17-My27066	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S17-My27066	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S17-My27066	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S17-My27066	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S17-My27066	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S17-My27066	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S17-My27066	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C10	S17-My27066	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Naphthalene	S17-My27066	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

This report has been revised to include TRH C6-C10 and Naphthalene results.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised By

Nibha Vaidya Analytical Services Manager Ryan Hamilton Senior Analyst-Volatile (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ESDAT QA Checker

Project:52680 Filter: ALL

Overview Summary

Count of Samples

Summary By Compound

Count of Results

Holding Times

Holding Time Errors (10)

Blanks

Field Blanks

Detects in Lab Blanks (1)

SDG's without Storage Blanks (6)

SDG's without Method Blanks (0)

Duplicates

Field and Interlab Duplicates

Lab Duplicates with high RPDs (0)

Duplicate Samples with incorrect or missing Parent Samples (0)

Samples at the same Location/Depth/Time not specified as duplicates (1)

Surrogates

Surrogate Variation > 30% or outside lab LCL or UCL (16)

Lab Control Samples

SDG's without a Laboratory Control Sample (0)

Laboratory Control Samples, Error > 30% (23)

Certified and Standard Reference Materials

Certified Reference Materials - Error > 30% (0)

Matrix Spikes

SDG's without a Matrix Spike (0)

Trip Spikes with invalid Control Sample (0)

Less than 1 matrix spike in 20 samples, or less than 1 matrix duplicate in 20 samples (2)

Matrix Spike Recoveries less than 70% or greater than 130% or outside lab LCL or UCL (7)

Trip Spike Recoveries (70% - 130% is acceptable) (12)

Inorganic

Na + CL > TDS (0)

BOD > COD(0)

BOD > COD(0)

Other

Unit Conversion Problems (0)

OriginalChemNames Requiring Validation (1)

Samples with no Results (0)

Samples associated with Wells which are not specified in the Well Table (9)

Aborted Analysis (0)

Contents
Count of Samples

Matrix Type	SOIL	WATER
First Sample Date	28-Apr-17	28-Apr-17
Last Sample Date	28-Apr-17	16-May-17
Sampling Period (days)	1	19
Number of Samples Submitted	10	13
Number of Non QA Samples Submitted	8	9
Number of Field Blanks	0	0
Number of Trip Blanks	0	2
Number of Rinsates	0	1
Number of Field Duplicates	1	1
Number of Trip Spikes	0	2
Number of Lab Duplicates	3	1
Number of LCSs	13	13
Number of CRMs	0	0
Number of Method Blanks	10	12
Number of Storage Blanks	0	0
Number of Matrix Spikes	10	7
Number of Matrix Spike Dupes	0	0

4 Mitchell Street Enfield Tian An Enfield Pty Ltd / [Site_Name]

			Num Results		Holding Times (days)			Lab Control Samples Method and Storage Blanks					
Chara Grave	ChamNama	Danne	Non QA (Normal + Composite)	Volatility Group	Sample to Extraction	Sample to Analysis	Acceptable	Recovery %	Num Reported	cceptable	Range	Num Reported	cceptable
Chem_Group Asbestos	ChemName Approx. Sample Mass	Range	3	Other	О	∞ ∢ 7	Y	<u>~</u>	2 &	∢	<u>«</u>	0	∀
	Asbestos from ACM in Soil Asbestos from FA & AF in Soil		3	Other Other	0	7	Y		0			0	
	Mass ACM		3	Other	0	7	Y		0			0	
	Mass AF Mass Asbestos in ACM		3	Other Other	0	7	Y		0			0	
	Mass Asbestos in AF		3	Other	0	7	Y		0			0	
	Mass Asbestos in FA Mass Asbestos in FA & AF		3	Other Other	0	7	Y		0			0	
	Mass FA		3	Other	0	7	Υ		0			0	
Asbestos - Trace Analysis	ACM - Comment		3	Other	0	7	Υ		0			0	
	AF - Comment FA - Comment		3	Other Other	0	7	Y		0			0	
	Organic Fibres - Comment		3	Other	0	7	Y		0			0	
	Respirable Fibres - Comment Synthetic Fibres - Comment		3	Other Other	0	7	Y		0			0	
DTEV		0.4 == =	0	V/00	4 to 24	C to 22	NI NI	07 to 444	2	V	ND		V
BTEX	Benzene Ethylbenzene	0.1 mg/kg 0.1 mg/kg	8	VOC	4 to 31 4 to 31	6 to 32 6 to 32	N N	97 to 114 85 to 120	3	Y	ND ND	3	Y
	Toluene Xylene (m & p)	0.1 mg/kg 0.2 mg/kg	8	VOC	4 to 31 4 to 31	6 to 32	N N	80 to 118 89 to 115	3	Y	ND ND	3	Y
	Xylene (o)	0.1 mg/kg	8	VOC	4 to 31	6 to 32	N	87 to 117	3	Y	ND	3	Y
	Xylene (Total)	0.3 mg/kg	8	VOC	4 to 31	6 to 32	N	101 to 116	2	Y	ND	3	Y
Chlorinated Benzenes	Hexachlorobenzene	0.05 mg/kg	3	SVOC	5	7	Υ	125 to 125	1	Υ	ND	1	Υ
Herbicides & Fungicides	Dinoseb	20 mg/kg	3	SVOC	7	7	Y	82 to 82	1	Y	ND	1	Y
Ionic Balance	Cation Exchange Capacity	0.05 meq/100g	1	Other	5	7	Y		0		ND	1	Y
TOTILC Data ICE	EC 1:5 soil:water	10 μS/cm	1	Other	5	7	Y		0		ND	0	
Metals & Metalloids	Arsenic (Total)	2 mg/kg	7	Other	4 to 6	4 to 7	Y	89 to 109	2	Y	ND	2	Y
Wotalo & Wotalloldo	Cadmium	0.4 mg/kg	7	Other	4 to 6	4 to 7	Y	84 to 101	2	Y	ND	2	Y
	Chromium (Total) Copper	5 mg/kg 5 mg/kg	7	Other Other	4 to 6	4 to 7 4 to 7	Y	86 to 105 91 to 107	2	Y	ND ND	2	Y
	Lead	5 mg/kg	7	Other	4 to 6	4 to 7	Y	102 to 105	2	Y	ND	2	Y
	Mercury (Inorganic) Nickel	0.1 mg/kg 5 mg/kg	7	Other Other	4 to 6 4 to 6	4 to 7 4 to 7	Y	104 to 104 87 to 96	2	Y	ND ND	2	Y
	Zinc	5 mg/kg	7	Other	4 to 6	4 to 7	Y	81 to 101	2	Y	ND	2	Y
Organochlorine Pesticides	4,4-DDE	0.05 mg/kg	3	SVOC	5	7	Υ	117 to 117	1	Υ	ND	1	Υ
	Aldrin alpha-BHC	0.05 mg/kg 0.05 mg/kg	3	SVOC SVOC	5 5	7	Y	109 to 109 120 to 120	1	Y	ND ND	1	Y
	beta-BHC	0.05 mg/kg	3	SVOC	5	7	Y	119 to 119	1	Y	ND	1	Y
	Chlordane DDD	0.1 mg/kg 0.05 mg/kg	3	SVOC SVOC	5 5	7	Y	122 to 122 130 to 130	1	Y N	ND ND	1	Y
	DDT delta-BHC	0.05 mg/kg	3	SVOC	5	7	Y		0	V	ND	1	Y
	Dieldrin	0.05 mg/kg 0.05 mg/kg	3	SVOC SVOC	5 5	7	Y	126 to 126 128 to 128	1	Y	ND ND	1	Y
	Endosulfan alpha Endosulfan beta	0.05 mg/kg 0.05 mg/kg	3	SVOC SVOC	5 5	7	Y	121 to 121 125 to 125	1	Y	ND ND	1	Y
	Endosulfan sulphate	0.05 mg/kg	3	SVOC	5	7	Y	125 to 125	1	Y	ND	1	Y
	Endrin Endrin aldehyde	0.05 mg/kg 0.05 mg/kg	3	SVOC SVOC	5 5	7	Y	128 to 128 116 to 116	1	Y	ND ND	1	Y
	Endrin ketone	0.05 mg/kg	3	SVOC	5	7	Y	126 to 126	1	Y	ND	1	Y
	Heptachlor Heptachlor Epoxide	0.05 mg/kg 0.05 mg/kg	3	SVOC SVOC	5 5	7	Y	126 to 126 78 to 78	1	Y	ND ND	1	Y
	Lindane	0.05 mg/kg	3	SVOC	5	7	Y	115 to 115	1	Y	ND ND	1	Y
	Methoxychlor Pentachlorophenol	0.2 mg/kg 1 mg/kg	3	SVOC SVOC	5 7	7	Y	118 to 118 91 to 91	1	Y	ND ND	1	Y
	Toxaphene	1 mg/kg	3	SVOC	5	7	Y	128 to 128	1	Y	ND	1	Y
Organophosphorus Pesticides	Azinphos methyl	0.2 mg/kg	3	SVOC	5	7	Y		0		ND	1	Y
	Chlorfenvinphos Chlorpyrifos	0.2 mg/kg 0.2 mg/kg	3	SVOC SVOC	5 5	7	Y		0		ND ND	1	Y
	Chlorpyrifos-methyl	0.2 mg/kg	3	SVOC	5	7	Y		0		ND	1	Y
	Coumaphos Demeton-O	2 mg/kg 0.2 mg/kg	3	SVOC SVOC	5 5	7	Y		0		ND ND	1	Y
	Demeton-S Diazinon	0.2 mg/kg 0.2 mg/kg	3	SVOC SVOC	5 5	7	Y		0		ND ND	1	Y
	Dichlorvos	0.2 mg/kg	3	SVOC	5	7	Y		0		ND	1	Y
	Dimethoate Disulfoton	0.2 mg/kg 0.2 mg/kg	3	SVOC SVOC	5 5	7	Y	103 to 103	0	Y	ND ND	1	Y
	EPN	0.2 mg/kg	3	SVOC	5	7	Y		0		ND	1	Y
	Ethion Ethoprophos	0.2 mg/kg 0.2 mg/kg	3	SVOC SVOC	5 5	7	Y		0		ND ND	1	Y
	Fenitrothion Fensulfothion	0.2 mg/kg 0.2 mg/kg	3	SVOC SVOC	5	7	Y	105 to 105	1	Y	ND ND	1	Y
	Fenthion	0.2 mg/kg	3	SVOC	5	7	Y		0		ND	1	Y
	Malathion Merphos	0.2 mg/kg 0.2 mg/kg	3	SVOC SVOC	5 5	7	Y		0		ND ND	1	Y
	Mevinphos	0.2 mg/kg	3	SVOC	5	7	Y		0		ND	1	Y
	Monocrotophos Omethoate	2 mg/kg 2 mg/kg	3	SVOC SVOC	5 5	7	Y		0		ND ND	1	Y
	Parathion	0.2 mg/kg	3	SVOC	5	7	Y		0		ND	1	Y
	Parathion methyl Phorate	0.2 mg/kg 0.2 mg/kg	3	SVOC SVOC	5 5	7	Y	1	0		ND ND	1	Y
	Pirimiphos methyl	0.2 mg/kg	3	SVOC	5	7	Y		0		ND	1	Y
	Pyrazophos Ronnel	0.2 mg/kg 0.2 mg/kg	3	SVOC SVOC	5 5	7	Y	<u> </u>	0	<u> </u>	ND ND	1	Y
	Sulprofos	0.2 mg/kg	3	SVOC	5	7	Y		0		ND	1	Y
	Terbufos Tetrachlorvinphos	0.2 mg/kg 0.2 mg/kg	3	SVOC SVOC	5 5	7	Y		0		ND ND	1	Y
	Tokuthion	0.2 mg/kg	3	SVOC	5	7	Y		0		ND ND	1	Y
	Trichloronate	0.2 mg/kg	3	SVOC	5	/	'		0			1	'
Other	% Clay % Moisture 103oC	1 % 1 %	1 7	Other Other	5	7	Y	100 to 100	1	Υ	ND	1	Y
	76 IVIOISTURE TU30C	1 %	/	Otner	l U	/	Y	<u> </u>	U	I		<u> </u>	

4 Mitchell Street Enfield

Tian An Enfield Pty Ltd / [Site_Name]

	Moisture	1	0	Other	4 5	Y		0		T	0	Τ
Phenols	2,4,5-trichlorophenol	1 mg/kg	3	SVOC	7 7	Y	90 to 90	1	Y	ND	1	Y
	2,4,6-trichlorophenol	1 mg/kg	3	SVOC	7 7	<u>Y</u>	88 to 88	1	Y	ND	1	Y
	2,4-dichlorophenol 2,4-dimethylphenol	0.5 mg/kg	3	SVOC SVOC	7 7	Y	87 to 87 81 to 81	1	Y	ND ND	1	Y
	2,4-dinitrophenol	0.5 mg/kg 5 mg/kg	3	SVOC	7 7	Y	78 to 78	1	Y	ND ND	1	Y
	2,6-dichlorophenol	0.5 mg/kg	3	SVOC	7 7	Y	85 to 85	1	Y	ND ND	1	Y
	2-chlorophenol	0.5 mg/kg	3	SVOC	7 7	Y	82 to 82	1	Y	ND	1	Y
	2-Methylphenol	0.2 mg/kg	3	SVOC	7 7	Υ	87 to 87	1	Y	ND	1	Y
	2-nitrophenol	1 mg/kg	3	SVOC	7 7	Υ	77 to 77	1	Υ	ND	1	Υ
	3- & 4-Methylphenol	0.4 mg/kg	3	SVOC	7 7	Υ	81 to 81	1	Y	ND	1	Υ
	4,6-Dinitro-2-methylphenol	5 mg/kg	3	SVOC	7 7	Y	104 to 104	1	Y	ND	1	Y
	4,6-Dinitro-o-cyclohexyl phenol	20 mg/kg	3	SVOC	7 7	Y	103 to 103	1	Y	ND	1	Y
	4-Chloro-3-Methylphenol 4-nitrophenol	1 mg/kg	3	SVOC SVOC	7 7	Y	77 to 77 95 to 95	1	Y	ND ND	1	Y
	Phenol	5 mg/kg 0.5 mg/kg	3	SVOC	5 7	Y	79 to 79	1	Y Y	ND ND	1	Y Y
	Total Halogenated Phenol	1 mg/kg	3	SVOC	7 7	Y	791079	0	1	ND ND	0	- '
	Total Non-Halogenated Phenol	20 mg/kg	3	SVOC	7 7	Y		0			0	
	Total Tetrachlorophenols	1 mg/kg	3	SVOC	7 7	Υ	96 to 96	1	Y	ND	1	Y
	·											
Polychlorinated Biphenyls	Aroclor 1016	0.5 mg/kg	3	SVOC	5 7	Υ		0		ND	1	Υ
	Aroclor 1221	0.1 mg/kg	3	SVOC	5 7	<u>Y</u>		0		ND	1	Y
	Aroclor 1232	0.5 mg/kg	3	SVOC	5 7	Y		0		ND	1	Y
	Aroclor 1242	0.5 mg/kg	3 3	SVOC SVOC	3 /	Y V		0		ND ND	1	Y
	Aroclor 1248 Aroclor 1254	0.5 mg/kg 0.5 mg/kg	3	SVOC	5 7 5 7	Y		0		ND ND	1	Y
	Aroclor 1260	0.5 mg/kg	3	SVOC	5 7	Y	81 to 81	1	Y	ND ND	1	Y
	PCBs (Total)	0.5 mg/kg	3	SVOC	5 7	Y		0	L	ND	1	Y
Polycyclic Aromatic Hydrocarbons	Acenaphthene	0.5 mg/kg	3	SVOC	5 7	Y	77 to 77	1	Y	ND	1	Y
	Acenaphthylene	0.5 mg/kg	3	SVOC	5 7	Y	83 to 83	1	Y	ND	1	Y
	Anthracene	0.5 mg/kg	3	SVOC	5 7	Y V	93 to 93	1	Y	ND ND	1	Y
	Benzo(a)nyrene	0.5 mg/kg	3	SVOC	5 7	Y	88 to 88	1	Y	ND ND	1	Y Y
	Benzo(a)pyrene Benzo(a)pyrene TEQ (lower bound)*	0.5 mg/kg	3 3	SVOC	5 7	Y Y	82 to 82	0	† r	ND	0	
	Benzo(a)pyrene TEQ (nedium bound)*	0.5 mg/kg			1 1	Y		0				┼
	, ,,,	0.5 mg/kg	3	SVOC	'	Y					0	┼
	Benzo(a)pyrene TEQ (upper bound)	0.5 mg/kg	3	SVOC SVOC	0 7	Y		0		ND	0	Y
	Benzo(b,j)fluoranthene Benzo(g,h,i)perylene	0.5 mg/kg 0.5 mg/kg	3 3	SVOC	5 7 5 7	<u>Ү</u> Ү	83 to 83	1	V	ND ND	1	Y
	Benzo(k)fluoranthene	0.5 mg/kg	3	SVOC	5 7	Y	87 to 87	1	Y	ND ND	1	Y
	Chrysene	0.5 mg/kg	3	SVOC	5 7	Y	89 to 89	1	Y	ND	1	Y
	Dibenz(a,h)anthracene	0.5 mg/kg	3	SVOC	5 7	Y	79 to 79	1	Y	ND	1	Y
	Fluoranthene	0.5 mg/kg	3	SVOC	5 7	Υ	86 to 86	1	Υ	ND	1	Y
	Fluorene	0.5 mg/kg	3	SVOC	5 7	Υ	87 to 87	1	Υ	ND	1	Υ
	Indeno(1,2,3-c,d)pyrene	0.5 mg/kg	3	SVOC	5 7	Υ	83 to 83	1	Υ	ND	1	Υ
	Naphthalene	0.5 mg/kg	11	VOC	4 to 35 6 to 32	N	81 to 129	3	Y	ND	4	Y
	PAHs (Total)	0.5 mg/kg	3	SVOC	0 7	<u>Y</u>	22 / 22	0	.,		0	<u> </u>
	Phenanthrene	0.5 mg/kg	3 3	SVOC SVOC	5 7	Y	89 to 89 86 to 86	1	Y	ND ND	1	Y
	Pyrene	0.5 mg/kg	<u> </u>	3000	5 7	r	00 10 00	ı	Ť	IND	ı	1
Surrogate	4-Terphenyl-d14		0	SVOC		Υ		0			0	
	Surrogate 2-fluorobiphenyl		0	SVOC		Y		0		,	0	
	Surrogate 4-BFB		0	VOC		Υ		0			0	
	Surrogate aaa-Trifluorotoluene		0	SVOC		Υ	111 to 111	1	Υ		0	
	Surrogate Dibutylchlorendate		0	SVOC		Y		0			0	<u> </u>
	Surrogate o-Terphenyl		0	SVOC		<u>Y</u>	119 to 119	1	Y		0	
	Surrogate Phenol-d6 Surrogate TCMX		0	SVOC SVOC		Y		0			0	
	Surrogate Triphenylphosphate		0	SVOC		Y		0			0	+
	535gato impriorigiprioopriate	1	<u> </u>	3,00	 					1	<u> </u>	<u> </u>
TPHs (NEPC 1999)	C10-C14 Fraction	20 mg/kg	7	SVOC	4 to 6 5 to 7	Υ	106 to 109	2	Υ	ND	2	Υ
, , , , , , , , , , , , , , , , , , ,	C10-C36 Fraction (Total)	50 mg/kg	7	SVOC	0 7	Υ		0			0	
	C15-C28 Fraction	50 mg/kg	7	SVOC	4 to 6 5 to 7	Υ	101 to 101	1	Y	ND	2	Y
	C29-C36 Fraction	50 mg/kg	7	SVOC	4 to 6 5 to 7	Y	91 to 91	1	Y	ND	2	Y
	C6-C9 Fraction	20 mg/kg	8	VOC	4 to 31 6 to 32	N	88 to 111	3	Y	ND	3	Y
TRHs (NEPC 2013)	>C10-C16 Fraction	50 mg/kg	7	SVOC	4 to 6 5 to 7	Y	100 to 106	2	Y	ND	2	V
11110 (INET O 2010)	>C10-C16 Fraction >C10-C16 less Naphthalene (F2)	50 mg/kg 50 mg/kg	7	SVOC	0 to 4 5 to 7	<u>т</u> Ү	100 10 100	0	+ '	IND	0	
	>C10-C10 less Naphthalene (12)	oo mg/ng	0	SVOC	4 5	Y		0		ND	1	Y
	>C16-C34 Fraction	100 mg/kg	7	SVOC	4 to 6 5 to 7	Y	101 to 101	1	Υ	ND	2	Y
	>C34-C40 Fraction	100 mg/kg	7	SVOC	4 to 6 5 to 7	Υ	91 to 91	1	Υ	ND	2	Υ
	C6-C10 Fraction	20 mg/kg	8	VOC	4 to 35 6 to 32	N	88 to 106	3	Y	ND	3	Υ
	C6-C10 less BTEX (F1)	20 mg/kg	8	VOC	0 to 35 6 to 32	N		0			0	
BTEX	Benzene	0.001 mg/L	5	VOC	0 to 1 2 to 7	Υ	89 to 94	3	V	ND	3	Y
DILA	Ethylbenzene	0.001 mg/L 0.001 mg/L	<u> </u>	VOC	0 to 1 2 to 7	Y	91 to 104	3	Y	ND ND	3	Y
	Toluene	0.001 mg/L	5	VOC	0 to 1 2 to 7	Y	90 to 107	3	Y	ND ND	3	Y
	Xylene (m & p)	0.001 mg/L	5	VOC	0 to 1 2 to 7	Y	94 to 116	3	Y	ND	3	Y
	Xylene (o)	0.001 mg/L	5	VOC	0 to 1 2 to 7	Y	93 to 112	3	Y	ND	3	Y
	Xylene (Total)	0.003 mg/L	4	VOC	0 to 1 7	Υ	93 to 115	2	Υ	ND	2	Υ
				0115		.,						
Herbicides & Fungicides	Dinoseb	0.1 mg/L	4	SVOC	6 to 7 7	Y	38 to 54	2	N	ND	2	Y
Metals & Metalloids	Arsenic (Total)	0.001 ma/l	0	Other	0 to 31 2 to 32	Υ	86 to 112	3	V	ND	4	Y
VICTAIS & IVICTAIIUIUS	Cadmium	0.001 mg/L 0.0001 to 0.0002 mg/L	9	Other	0 to 31 2 to 32 0 to 31 2 to 32	<u>Ү</u> Ү	86 to 112 86 to 116	3	Y	ND ND	4	Y
	Chromium (Total)	0.0001 to 0.0002 mg/L 0.001 mg/L	9	Other	0 to 31 2 to 32	Y	83 to 113	3	Y	ND ND	4	Y
	Copper	0.001 mg/L	9	Other	0 to 31 2 to 32	Y	86 to 118	3	Y	ND ND	4	Y
	Lead	0.001 mg/L	9	Other	0 to 31 2 to 32	Y	98 to 110	3	Y	ND to 0.001 mg/l	4	N
	Mercury (Inorganic)	0.00005 to 0.0001 mg/L	9	Other	0 to 31 2 to 32	Υ	92 to 125	3	Y	ND	4	Y
	ivicious (inorganio)						05 / 111	_	1 1/		4	Y
	Nickel	0.001 mg/L	9	Other	0 to 31 2 to 32	Υ	85 to 114	3	Υ	ND	4	
		0.001 mg/L 0.001 to 0.005 mg/L	9	Other Other	0 to 31 2 to 32 0 to 31 2 to 32	Y	85 to 114 84 to 114	3	Y	ND ND	4	Y

Organochlorine Pesticides	Pentachlorophenol	0.01 mg/L	4	SVOC	6 to 7	7	Υ	38 to 46	2	N	ND	2	Υ
PAHs in Water	Panza/h i Ll/fluoronthana	2.114/1	4	Other	2	2	Y		0		ND		V
PARS IN Water	Benzo(b,j+k)fluoranthene	2 μg/L	1	Other	2	3	Y		0		ND	1	Y
Phenols	2,4,5-trichlorophenol	0.001 mg/L	4	SVOC	6 to 7	7	Y	39 to 51	2	N	ND	2	Υ
	2,4,6-trichlorophenol	0.01 mg/L	4	SVOC	6 to 7	7	Y	37 to 50	2	N	ND	2	Y
	2,4-dichlorophenol	0.001 mg/L 0.001 mg/L	4	SVOC SVOC	6 to 7	7	Y	75 to 118 73 to 103	2	Y	ND ND	2	Y
	2,4-dimethylphenol 2,4-dinitrophenol	0.001 mg/L 0.001 mg/L	4	SVOC	6 to 7	7	Y	32 to 110	2	N	ND ND	2	Y
	2,6-dichlorophenol	0.003 mg/L	4	SVOC	6 to 7	7	Y	80 to 112	2	Y	ND	2	Y
	2-chlorophenol	0.003 mg/L	4	SVOC	6 to 7	7	Y	73 to 107	2	Υ	ND	2	Y
	2-Methylphenol	0.003 mg/L	4	SVOC	6 to 7	7	Υ	66 to 91	2	N	ND	2	Υ
	2-nitrophenol	0.005 mg/L	4	SVOC	6 to 7	7	Y	43 to 62	2	N	ND	2	Y
	3- & 4-Methylphenol 4,6-Dinitro-2-methylphenol	0.006 mg/L 0.005 mg/L	4 1	SVOC SVOC	6 to 7	7	Y	52 to 78 31 to 31	2	N N	ND ND	2	Y
	4,6-Dinitro-o-cyclohexyl phenol	0.1 mg/L	4	SVOC	6 to 7	7	Y	32 to 50	2	N	ND	2	Y
	4-Chloro-3-Methylphenol	0.01 mg/L	4	SVOC	6 to 7	7	Y	35 to 47	2	N	ND	2	Y
	4-nitrophenol	0.001 mg/L	4	SVOC	6 to 7	7	Y	32 to 32	1	N	ND	2	Y
	Phenol	0.003 mg/L	4	SVOC	3 to 6	7	Y	35 to 35	1	N	ND	2	Y
	Phenols (Total)	0.05 mg/L	1	SVOC SVOC	0 to 7	7	Y	100 to 100	0	Y	ND	0	Y
	Total Halogenated Phenol Total Non-Halogenated Phenol	0.01 mg/L 0.1 mg/L	4	SVOC	0 to 7	7	Y		0		 	0	-
	Total Tetrachlorophenols	0.03 mg/L	4	SVOC	6 to 7	7	Y	33 to 48	2	N	ND	2	Υ
	·												
Polychlorinated Biphenyls	Aroclor 1016		0	SVOC	3	7	Y		0		ND	1	Y
	Arcelor 1221		0	SVOC	3	7	Y		0		ND ND	1 1	Y
	Aroclor 1232 Aroclor 1242		0	SVOC SVOC	3	7	Y		0		ND ND	1 1	Y
	Aroclor 1248		0	SVOC	3	7	Y		0	<u> </u>	ND ND	1	Y
	Aroclor 1254		0	SVOC	3	7	Y		0		ND	1	Y
	Aroclor 1260		0	SVOC	3	7	Υ		0		ND	1	Υ
	PCBs (Total)		0	SVOC	3	7	Y		0		ND	1	Y
Polycyclic Aromatic Hydrocarbons	Acenaphthene	0.001 mg/L	5	SVOC	2 to 6	3 to 7	Y	79 to 81	2	V	ND	3	V
Folycyclic Alomatic Hydrocarbons	Acenaphthylene	0.001 mg/L	5	SVOC	2 to 6	3 to 7	Y	78 to 91	2	Y	ND	3	Y
	Anthracene	0.001 mg/L	5	SVOC	2 to 6	3 to 7	Y	80 to 86	2	Y	ND	3	Y
	Benz(a)anthracene	0.001 mg/L	5	SVOC	2 to 6	3 to 7	Υ	90 to 95	2	Υ	ND	3	Υ
	Benzo(a)pyrene	0.001 mg/L	5	SVOC	2 to 6	3 to 7	Y	93 to 125	3	Υ	ND	3	Y
	Benzo(a)pyrene TEQ (WHO) Benzo(b,j)fluoranthene	0.005 mg/L 0.001 mg/L	1	SVOC SVOC	2 3 to 6	3	Y	77 to 99	2	V	ND ND	1 2	Y
	Benzo(g,h,i)perylene	0.001 mg/L 0.001 mg/L	5	SVOC	2 to 6	3 to 7	Y	80 to 80	2	Y	ND ND	3	Y
	Benzo(k)fluoranthene	0.001 mg/L	4	SVOC	3 to 6	7	Y	80 to 96	2	Y	ND	2	Y
	Chrysene	0.001 mg/L	5	SVOC	2 to 6	3 to 7	Υ	87 to 100	3	Υ	ND	3	Υ
	Dibenz(a,h)anthracene	0.001 mg/L	5	SVOC	2 to 6	3 to 7	Υ	79 to 82	2	Υ	ND	3	Υ
	Fluoranthene	0.001 mg/L	5	SVOC	2 to 6	3 to 7	Y	84 to 120	3	Y	ND ND	3	Y
	Fluorene Indeno(1,2,3-c,d)pyrene	0.001 mg/L 0.001 mg/L	5 5	SVOC SVOC	2 to 6 2 to 6	3 to 7 3 to 7	Y	80 to 112 77 to 82	3 2	Y	ND ND	3	Y Y
	Naphthalene	0.001 to 0.01 mg/L	10	VOC	0 to 6	2 to 7	Y	75 to 95	5	Y	ND	6	Y
	PAHs (Total)	0.001 mg/L	4	SVOC	0 to 1	7	Y		0			0	
	Phenanthrene	0.001 mg/L	5	SVOC	2 to 6	3 to 7	Υ	84 to 131	3	N	ND	3	Υ
	Pyrene	0.001 mg/L	5	SVOC	2 to 6	3 to 7	Y	83 to 118	3	Y	ND	3	Y
	Total Positive PAHs	0.001 mg/L	1	SVOC	2	3	Y		0		ND	1	Y
Surrogate	4-Terphenyl-d14		0	SVOC			Y	128 to 128	1	Y	 	0	
	Surrogate 2-fluorobiphenyl		0	SVOC			Y		0			0	
	Surrogate 4-BFB		0	VOC			Υ	110 to 110	1	Υ		0	
	Surrogate Dibromofluoromethane		0	VOC			Y	89 to 89	1	Y		0	
	Surrogate o-Terphenyl		0	SVOC		-	Y	89 to 89	1	Y	 	0	
	Surrogate TCMX Surrogate toluene-d8		0	SVOC VOC			Y	105 to 105	1	Y	 	0	
	January Company do		Ŭ	.55			<u>'</u>	. 30 10 100		<u> </u>			
TPHs (NEPC 1999)	C10-C14 Fraction	0.05 mg/L	5	SVOC	2 to 6	3 to 7	Υ	83 to 125	3	Υ	ND	3	Υ
	C10-C36 Fraction (Total)	0.1 mg/L	4	SVOC	0 to 1	7	Y		0			0	
	C15-C28 Fraction	0.1 mg/L	5	SVOC	2 to 6	3 to 7	Y	101 to 101	1	Y	ND ND	3	Y
	C29-C36 Fraction C6-C9 Fraction	0.1 mg/L 0.01 to 0.02 mg/L	5 5	SVOC VOC	2 to 6 0 to 1	3 to 7 2 to 7	Y	84 to 84 92 to 98	3	Y	ND ND	3	Y
	CO-CO FIACION	0.01 to 0.02 mg/L	5	۷٥٥	0 (0 1	2 10 /	ı r	32 IU 38	3	1	ואט	3	
TRHs (NEPC 2013)	>C10-C16 Fraction	0.05 mg/L	5	SVOC	2 to 6	3 to 7	Υ	95 to 128	3	Υ	ND	3	Υ
114113 (1121 3 2313)	>C10-C16 less Naphthalene (F2)	0.05 mg/L	5	SVOC	0 to 2	3 to 7	Y		0			0	
114.10 (142.1 0 2010)				0) (0.0	0.40.0	3 to 7	Υ	101 to 101	1	V	ND	3	Υ
77470 (1421 0 2010)	>C16-C34 Fraction	0.1 mg/L	5	SVOC	2 to 6				-	'			
	>C16-C34 Fraction >C34-C40 Fraction C6-C10 Fraction	0.1 mg/L 0.1 mg/L 0.01 to 0.02 mg/L	5 5 5	SVOC SVOC VOC	2 to 6 2 to 6 0 to 1	3 to 7 2 to 7		84 to 84 89 to 98	1 3	Y	ND ND	3	Y

Laborat	ory Duplic	ates		Surrogates		Matrix,Trip and C	ompound S	Spikes	Field,Rinsate	and Trip B	lanks	Field	Duplicates	S
Max RPD > EQL x 1	Num Reported	Acceptable	Recovery %	Num Reported	Acceptable	Recovery %	Num Reported	Acceptable	Range	Num Reported	Acceptable	Max RPD > EQL x 1	Num Reported	Acceptable
	0	N	_	0		_	0	,	_	0			0	N
	0	N N		0			0			0			0	N N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N N		0			0			0			0	N N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N N		0			0			0			0	N N
	0	N		0			0			0			0	N
	0	N		0		86 to 102	2	Y		0			1	Y
	0	N N		0		90 to 107 87 to 104	2	Y		0			1	Y
	0	N		0		89 to 103	2	Υ		0			1	Y
	0	N		0		89 to 103	2	Y		0			1	Y
	0	N		0		89 to 103	2	Y		0			1	Y
	0	N	<u> </u>	0			0			0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
		AI				70 +0 70	4	Y		0		25	4	Υ
	0	N N		0		72 to 72 76 to 76	1	Y		0		35	1	Y
	0	N		0		89 to 89	1	Υ		0		17	1	Y
	0	N		0		80 to 80	1	Y		0		7	1	Y
	0	N N		0		74 to 74 93 to 93	1	Y		0		8	1	Y
	0	N		0		85 to 85	1	Y		0		15	1	Y
	0	N		0		86 to 86	1	Υ		0		11	1	Υ
		NI NI		0		105 to 105	4	Y		0			0	NI NI
	0	N N		0		125 to 125 113 to 113	1	Y		0			0	N N
	0	N		0		119 to 119	1	Y		0			0	N
	0	N		0		100 to 100	1	Y		0			0	N
	0	N N		0		125 to 125 128 to 128	1	Y		0			0	N N
	0	N		0		87 to 87	1	Y		0			0	N
	0	N		0		117 to 117	1	Υ		0			0	N
	0	N		0		128 to 128	1	Y		0			0	N
	0	N N		0		128 to 128 121 to 121	1	Y		0			0	N N
	0	N		0		119 to 119	1	Υ		0			0	N
	0	N		0		126 to 126	1	Y		0			0	N
	0	N N		0		100 to 100 128 to 128	1	Y		0			0	N N
	0	N		0		114 to 114	1	Y		0			0	N
	0	N		0		76 to 76	1	Y		0			0	N
	0	N N		0		111 to 111 102 to 102	1	Y		0			0	N N
	0	N		0		83 to 83	1	Y		0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0		<u> </u>	0	N
	1	Y		0			0			0			0	N
	0	N		0			0			0			0	N
	0	Y N		0			0			0		<u> </u>	0	N N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N N		0			0			0			0	N N
	0	N N		0		103 to 103	1	Y		0			0	N N
	0	N		0			0	-		0			0	N
	1	Y		0			0			0			0	N
	0	N N		0			0			0			0	N N
	0	N		0		105 to 105	1	Y		0			0	N
	0	N		0			0			0			0	N
	0	N N		0			0			0			0	N N
	1	Y		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N Y		0			0			0			0	N N
	1	Y		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N Y		0			0			0			0	N
	1 1	Y		0			0			0			0	N N
	0	N		0			0			0			0	N
	1	Y		0			0			0			0	N
	1	Y		0			0			0			0	N N
	1	Y		0			0			0			0	N
	0	N		0			0			0			0	N
22	1	Y		0			0			0			0	N
	0	N	1	0			0			0		18	1	Y

	0	N		0			0			0			0	N
				_										
	0	N		0		91 to 91	1	Υ		0			0	N
								-						
	0	N		0		93 to 93	1	Υ		0			0	N
	0	N		0		95 to 95	1	Υ		0			0	N
	0	N		0		86 to 86	1	Υ		0			0	N
	0	N		0			0			0			0	N
	0	N		0		93 to 93	1	Υ		0			0	N
							-							
	0	N		0		90 to 90	1	Υ		0			0	N
	0	N		0		74 to 74	1	Υ		0			0	N
	0	N		0		87 to 87	1	Υ		0			0	N
	0	N		0		94 to 94	1	Υ		0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N		0		91 to 91	1	Υ		0			0	N
	0	N		0		102 to 102	1	Υ		0			0	N
	0	N		0		88 to 88	1	Υ		0			0	N
	0	N		0		00.10.00	0			0			0	N
	0	N		0			0			0			0	N
	0	N		0		94 to 94	1	Υ		0			0	N
	0	N		0			0			0			0	N
	0	N		0			0		1	0			0	N
-					1									
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N		0		85 to 85	1	Υ		0			0	N
	0	N		0		55 10 00	0	'		0			0	N
<u> </u>	U	IN		U			U		<u> </u>	U			<u> </u>	IN IN
	0	N		0		82 to 82	1	Υ		0			0	N
	0	N		0		85 to 85	1	Υ		0			0	N
	0	N		0		91 to 91	1	Y		0			0	N
	0	N		0		85 to 85	1	Y		0			0	N
 	<u> </u>						-		-					
	0	N		0		77 to 77	1	Y		0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
	0	N		0			0			0			0	N
						05 to 05								
	0	N		0		65 to 65	1	N		0			0	N
	0	N		0		87 to 87	1	Υ		0			0	N
	0	N		0		80 to 80	1	Υ		0			0	N
	0	N		0		85 to 85	1	Υ		0			0	N
	0	N		0		84 to 84	1	Y		0			0	N
		N				78 to 78	1	Y		0			0	N
	0			0										
	0	N		0		91 to 91	1	Υ		0			0	N
	0	N		0		87 to 87	1	Υ		0			0	N
	0	N		0		78 to 100	3	Υ		0			1	Υ
	0	N		0		70 10 100	0	·		0			0	N
						05 to 05								
	0	N		0		85 to 85	1	Υ		0			0	N
	0	N		0		75 to 75	1	Υ		0			0	N
	0	N	76 to 77	3	Υ		0			0			0	N
	0	N	73 to 76	3	Y		0			0			0	N
										0				
	0	N	60 to 72	9	N		0						0	N
	0	N	100 to 111	3	Υ		0			0			0	N
	0	N	52 to 58	3	N		0			0			0	N
	0	N	86 to 119	3	Υ		0			0			0	N
	0	N	66 to 74	3	N		0			0			0	N
		N	76 to 05		Y									
<u> </u>	0		76 to 95	3			0		<u> </u>	0			0	N
	0	N	96 to 98	3	Y		0			0			0	N
	1	Υ		0		96 to 96	1	Υ		0			1	Υ
	0	N		0			0			0			1	Υ
8	1	Y		0			0			0			1	Y
9	1	Y		0			0			0			1	Y
	1	Y		0		95 to 108	2	Υ		0			1	Y
-	'	ī		U		30 IO 100		Ī		U			- '-	 '
<u> </u>				_		00:				-			<u> </u>	
	1	Y		0		88 to 88	1	Υ	<u> </u>	0			1	Υ
	0	N		0			0			0			1	Υ
	0	N		0			0			0			0	N
9	1	Υ		0			0			0			1	Υ
	1	· Y		0			0			0			1	Y
-	1	Y				04 to 400	2	Υ					1	Y
				0		94 to 108		Y		0				-
	0	N		0			0			0			1	Υ
	0	N		0		95 to 103	4	Υ	ND	3	Υ		1	Υ
	0	N		0		83 to 96	4	Y	ND	3	Y		1	Y
	0	N		0		88 to 95	4	Y	ND	3	Y		1	Y
								-					<u>'</u>	-
	0	N		0		90 to 99	4	Y	ND	3	Y		1	Y
	0	N		0		87 to 100	4	Υ	ND	3	Υ		1	Υ
	0	N		0		89 to 99	4	Υ	ND	3	Υ		1	Υ
								_		_				
	0	N		0			0		ND	1	Υ		1	Υ
									1,10		<u> </u>		- 	-
	1	\/				00 += 400	2	\/	NID	4	\ <u>'</u>	400	1	A.
0	1	Y		0		88 to 122	2	Y	ND	1	Y	133	1	N
	1	Υ		0		89 to 121	2	Υ	ND	1	Υ		1	Υ
	1	Υ		0		83 to 117	2	Υ	ND	1	Υ		1	Υ
	1	Υ		0		79 to 109	2	Υ	0.002 to 0.002 mg/l	1	N		1	Υ
	1	Y		0		94 to 115	2	Y	ND	1	Y	164	1	N
-	0	N		0		88 to 91	2	Y	ND	1	Y	156	1	N
								•			-		<u> </u>	
0		\ <u>/</u>		, n		/	, , , , , , , , , , , , , , , , , , ,	17	KII'A	4	/	454	4	
0	1	Y		0		79 to 110	2	Y	ND	1	Y	151	1	N
0		Y		0		79 to 110 74 to 110	2	Y	ND ND	1	Y	151	1	N Y
	1	-										151	· · · · · · · · · · · · · · · · · · ·	

0															
O N		0	N		0			0		ND	1	Υ		1	Υ
O N															
O N		0	N		0			0			0			0	N
O N N					_										
O N N		0	N		0			0		ND	1			1	V
D											<u>'</u>				
0							00.15.00							<u> </u>	
0											1	•		<u> </u>	•
D							74 to 74		Υ		1			1	· ·
0		0	N		0			0		ND	1	Υ		1	Y
D		0	N		0		53 to 53	1	N	ND	1	Υ		1	Υ
D		0	N		0		71 to 71	1	Υ	ND	1	Υ		1	Υ
D		0					64 to 64	1	N		1	Υ		1	Y
0								1			1	Y		1	Y
0											1			1 1	
O N N							36 10 36	-	IN		'	· -		<u> </u>	
0											'				
O N N											'			<u> </u>	
0							32 to 32		N		1			1	
O		0	N		0			0			1	Υ		1	Υ
O N		0	N		0			0		ND	1	Υ		1	Υ
O N		0	N		0			0			0			0	N
0										ND		Υ			
O N											1			1	
O N											'			<u> </u>	
O N			14							IND	<u>'</u>	'		<u>'</u>	- '
O N		_								NID	4				
0	ļ										'	•			
O		0			0						1			0	
O		0			0			0			1	Υ		0	N
O		0	N		0			0		ND	1	Y		0	N
O		0	N		0			0		ND	1	Υ		0	N
0											1				
0											1			 	
0											1	•			
O	——	U	IN		<u> </u>			U		טאו		 		0	18
O					_			_			<u> </u>			<u> </u>	<u> </u>
0											'			<u> </u>	-
0		0			0			1			1			1	
N		0	N		0		77 to 77	1	Υ	ND	1	Υ		1	Υ
N		0	N		0		82 to 82	2	Υ	ND	1	Υ		1	Υ
O							77 to 82		Υ		1	Υ		1	Υ
0									-		0			0	-
0							101 to 101			ND					
0							72 to 72				'			<u>'</u>	
N														<u> </u>	
											1	_		<u> </u>	
O							82 to 84				1			<u> </u>	
N											1			1	_
0		0					74 to 83	2			1	_		1	-
0		0	N		0		76 to 76	2	Υ	ND	1	Υ		1	Υ
0		0	N		0		70 to 72	2	N	ND	1	Υ		1	Υ
0											2			2	
0 N 0 0 70 to 82 2 N ND 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1				1			0 00		·				1		_
O							70 to 82		N		1	•		<u>'</u>	
0 N 53 to 128 9 N 0 0 0 0 N 0 N 0 N 0 N 51 to 78 6 N 0 0 0 0 N 0 N 0 N 0 N 74 to 110 13 Y 0 0 0 0 N 0 N 0 N 74 to 110 13 Y 0 0 0 0 N 0 N 0 N 70 to 89 3 N 0 0 0 0 N 0 N 0 N 1 to 1 1 N 0 0 N 97 to 105 3 Y 0 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N											'				
							121019		Υ	טאו		T T			
0		U	N		U			U			U			U	N
0	ļ				_			_			_			_	
O															
0				51 to 78											
N		0	N		13	Y					0			0	
N		0	N			Υ		0			0			0	N
N						N									
0 N 97 to 105 3 Y 0 0 0 N 0 N 0 116 to 116 1 Y ND 1 Y 1 Y 0 N 0 0 ND 1 Y 10 N 0 N 0 0 ND 1 Y 67 1 N 0 N 0 0 ND 1 Y 67 1 N 0 N 0 98 to 126 2 Y ND 1 Y 1 Y 0 N 0 125 to 125 1 Y ND 1 Y 1 Y 0 N 0 0 ND 1 Y 1 Y 0 N 0 0 ND 1 Y 133 1 N 0 N 0 0 ND <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>															
0 N 0 116 to 116 1 Y ND 1 Y 1 Y 0 N 0 ND 1 Y 120 1 N 0 N 0 ND 1 Y 67 1 N 0 N 0 ND 1 Y 67 1 N 0 N 0 98 to 126 2 Y ND 1 Y 1 Y 0 N 0 125 to 125 1 Y ND 1 Y 1 Y 0 N 0 0 ND 1 Y 133 1 N 0 N 0 0 ND 1 Y 133 1 N 0 N 0 0 ND 1 Y 1 Y 0 N 0 0 ND 1 Y </th <th></th>															
0 N 0 ND 1 Y 120 1 N 0 N 0 ND 1 Y 67 1 N 0 N 0 ND 1 Y 67 1 N 0 N 0 98 to 126 2 Y ND 1 Y 1 Y 0 N 0 125 to 125 1 Y ND 1 Y 1 Y 0 N 0 ND 1 Y 1 Y 0 N 0 ND 1 Y 133 1 N 0 N 0 ND 1 Y 133 1 N 0 N 0 ND 1 Y 1 Y 0 N 0 ND 1 Y 1 Y 0 N 0 ND			- '4	J7 10 100		'		<u> </u>							- '*
0 N 0 ND 1 Y 120 1 N 0 N 0 ND 1 Y 67 1 N 0 N 0 ND 1 Y 67 1 N 0 N 0 98 to 126 2 Y ND 1 Y 1 Y 0 N 0 125 to 125 1 Y ND 1 Y 1 Y 0 N 0 ND 1 Y 1 Y 0 N 0 ND 1 Y 133 1 N 0 N 0 ND 1 Y 133 1 N 0 N 0 ND 1 Y 1 Y 0 N 0 ND 1 Y 1 Y 0 N 0 ND	—	0	l A		0		11C to 11C	4	V	NID	1	\ <u>\</u>		4	
0 N 0 ND 1 Y 67 1 N 0 N 0 ND 1 Y 67 1 N 0 N 0 98 to 126 2 Y ND 1 Y 1 Y 0 N 0 125 to 125 1 Y ND 1 Y 1 Y 0 N 0 ND 1 Y 133 1 N 0 N 0 ND 1 Y 1 Y							110101116		ř		<u> </u>		400	· ·	
0 N 0 ND 1 Y 67 1 N 0 N 0 98 to 126 2 Y ND 1 Y 1 Y 0 N 0 125 to 125 1 Y ND 1 Y 1 Y 0 N 0 ND 1 Y 133 1 N 0 N 0 ND 1 Y 133 1 N 0 N 0 ND 1 Y 1 Y 0 N 0 ND 1 Y 1 Y	ļ										'				
0 N 0 98 to 126 2 Y ND 1 Y 1 Y 0 N 0 125 to 125 1 Y ND 1 Y 1 Y 0 N 0 0 ND 1 Y 133 1 N 0 N 0 0 ND 1 Y 133 1 N 0 N 0 0 ND 1 Y 1 Y 0 N 0 95 to 111 2 Y ND 1 Y 1 Y											'	-		<u> </u>	
0 N 0 125 to 125 1 Y ND 1 Y 1 Y 0 N 0 0 ND 1 Y 133 1 N 0 N 0 0 ND 1 Y 133 1 N 0 N 0 0 ND 1 Y 133 1 N 0 N 0 0 ND 1 Y 1 Y 0 N 0 95 to 111 2 Y ND 1 Y 1 Y											1		67	1	
0 N 0 125 to 125 1 Y ND 1 Y 1 Y 0 N 0 0 ND 1 Y 133 1 N 0 N 0 0 ND 1 Y 133 1 N 0 N 0 0 ND 1 Y 133 1 N 0 N 0 0 ND 1 Y 1 Y 0 N 0 95 to 111 2 Y ND 1 Y 1 Y		0	N		0		98 to 126	2	Υ	ND	1	Y		1	Y
0 N 0 ND 1 Y 1 Y 0 N 0 ND 1 Y 133 1 N 0 N 0 ND 1 Y 133 1 N 0 N 0 ND 1 Y 1 Y 0 N 0 95 to 111 2 Y ND 1 Y 1 Y															
0 N 0 ND 1 Y 1 Y 0 N 0 ND 1 Y 133 1 N 0 N 0 ND 1 Y 133 1 N 0 N 0 ND 1 Y 1 Y 0 N 0 95 to 111 2 Y ND 1 Y 1 Y		0	N		0		125 to 125	1	Υ	ND	1	Υ		1	Υ
0 N 0 ND 1 Y 133 1 N 0 N 0 0 ND 1 Y 1 Y 0 N 0 95 to 111 2 Y ND 1 Y 1 Y											1	-			-
0 N 0 0 ND 1 Y 1 Y 0 N 0 95 to 111 2 Y ND 1 Y 1 Y											1	_	122		-
0 N 0 95 to 111 2 Y ND 1 Y 1 Y	—										'		133		
							0=				1 7			<u>'</u>	
0 N O O O O O O O O O O O O O O O O O O							95 to 111		Υ		1			'	
		0	N	<u> </u>	0			0		ND	1	Y	<u> </u>	1	Υ

Contents
Detects in Lab Blanks

Sample_Type SDG Lab_Report_Number 546369 546369 **Matrix_Type** WATER SampleCode METHODBLANK_2_546369 Compound Lead (filtered) Sampled_Date-Time Extraction_Date **Prefix** Result 16-05-17 MB 23-05-17 0.001 MG/L

Field Blanks (WATER) Filter: ALL

SDG	544088	544088	546369
Field ID	RB20170428	TB20170428	TB20170516
Sampled_Date/Time	28-04-17	28-04-17	16-05-17
Sample Type	Rinsate	Trip_B	Trip_B

Chem_Group	ChemName	Units	EQL	1	Ī	ı
BTEX	Benzene	mg/l	0.001	<0.001	<0.001	<0.001
BILX	Ethylbenzene	mg/l	0.001	<0.001	<0.001	<0.001
	Toluene	mg/l	0.001	<0.001	<0.001	<0.001
	Xylene (o)	mg/l	0.001	<0.001	<0.001	<0.001
	Xylene (m & p)	mg/l	0.002	<0.002	<0.002	<0.002
	Xylene (Total)	mg/l	0.003	<0.003	<0.003	<0.003
	ryione (rotal)		0.000	10.000	10.000	10.000
Herbicides & Fungicides	Dinoseb	mg/l	0.1	<0.1		
Metals & Metalloids	Arsenic (Total)	mg/l	0.001	<0.001		
	Arsenic (Total) (Filtered)	mg/l	0.001			
	Cadmium	mg/l	0.0002	<0.0002		
	Cadmium (Filtered)	mg/l	0.0001			
	Chromium (Total)	mg/l	0.001	<0.001		
	Chromium (Total) (Filtered)	mg/l	0.001			
	Copper	mg/l	0.001	0.002		
	Copper (Filtered)	mg/l	0.001			
	Lead	mg/l	0.001	<0.001		
	Lead (Filtered)	mg/l	0.001			
	Mercury (Inorganic)	mg/l	0.0001	<0.0001		
	Mercury (Inorganic) (Filtered)	mg/l	0.00005			
	Nickel	mg/l	0.001	<0.001		
	Nickel (Filtered)	mg/l	0.001			
	Zinc	mg/l	0.005	<0.005		
	Zinc (Filtered)	mg/l	0.001			
Organochlorine Pesticides	Pentachlorophenol	mg/l	0.01	<0.01		
DALLS 's Western	Day (Chial) (Chiang)	- /1				
PAHs in Water	Benzo(b,j+k)fluoranthene	μg/L	2			
Dhanala	O 4.5 triable reach and	/1	0.004	0.004		
Phenols	2,4,5-trichlorophenol	mg/l	0.001	<0.001		
	2,4,6-trichlorophenol	mg/l	0.01	<0.01		
	2,4-dichlorophenol	mg/l	0.001	<0.001 <0.001		
	2,4-dimethylphenol 2,4-dinitrophenol		0.001	<0.001		
	2,6-dichlorophenol	mg/l mg/l	0.003	<0.001		
	2-chlorophenol	mg/l	0.003	<0.003		
	2-Methylphenol	mg/l	0.003	<0.003		
	2-nitrophenol	mg/l	0.005	<0.005		
	3- & 4-Methylphenol	mg/l	0.006	<0.006		
	4,6-Dinitro-2-methylphenol	mg/l	0.005	<0.005		
	4,6-Dinitro-o-cyclohexyl phenol	mg/l	0.1	<0.1		
	4-Chloro-3-Methylphenol	mg/l	0.01	<0.01		
	4-nitrophenol	mg/l	0.001	<0.001		
	Phenol	mg/l	0.003	<0.003		
	Phenols (Total)	mg/l	0.05	40.000		
	Total Halogenated Phenol	mg/l	0.01	<0.01		
	Total Non-Halogenated Phenol	mg/l	0.1	<0.1		
	Total Tetrachlorophenols	mg/l	0.03	<0.03		
	<u> </u>	T T				
Polychlorinated Biphenyls	Aroclor 1016	mg/l	0.005	<0.005		
	Aroclor 1221	mg/l	0.001	<0.001		
	Aroclor 1232	mg/l	0.005	<0.005		
	Aroclor 1242	mg/l	0.005	< 0.005		
	Aroclor 1248	mg/l	0.005	<0.005		
	Aroclor 1254	mg/l	0.005	<0.005		
	Aroclor 1260	mg/l	0.005	<0.005		
	PCBs (Total)	mg/l	0.001	<0.001		
Polycyclic Aromatic Hydrocarbons	Acenaphthene	mg/l	0.001	<0.001		
	Acenaphthylene	mg/l	0.001	<0.001		
	Anthracene	mg/l	0.001	<0.001		
	Benz(a)anthracene	mg/l	0.001	<0.001		
	Benzo(a)pyrene	mg/l	0.001	<0.001		
	Benzo(a)pyrene TEQ (WHO)	mg/l	0.005			
	Benzo(b,j)fluoranthene	mg/l	0.001	<0.001		
	Benzo(g,h,i)perylene	mg/l	0.001	< 0.001		

Field Blanks (WATER)			SDG	544088	544088	546369
Filter: ALL			Field ID	RB20170428	TB20170428	TB20170516
			Sampled_Date/Time	28-04-17	28-04-17	16-05-17
			Sample Type	Rinsate	Trip_B	Trip_B
	Benzo(k)fluoranthene	mg/l	0.001	< 0.001		
	Chrysene	mg/l	0.001	< 0.001		
	Dibenz(a,h)anthracene	mg/l	0.001	< 0.001		
	Fluoranthene	mg/l	0.001	< 0.001		
	Fluorene	mg/l	0.001	< 0.001		
	Indeno(1,2,3-c,d)pyrene	mg/l	0.001	< 0.001		
	Naphthalene	mg/l	0.001	<0.01		
	Phenanthrene	mg/l	0.001	< 0.001		
	Pyrene	mg/l	0.001	< 0.001		
	PAHs (Total)	mg/l	0.001	< 0.001		
	Total Positive PAHs	mg/l	0.001			
TPHs (NEPC 1999)	C6-C9 Fraction	ma/l	0.01	<0.02		
TPHS (NEPC 1999)	C10-C14 Fraction	mg/l	0.05	<0.02		
	C15-C28 Fraction	mg/l	0.05	<0.05		
	C29-C36 Fraction	mg/l	0.1	<0.1		
		mg/l	0.1			
	C10-C36 Fraction (Total)	mg/l	0.1	<0.1		
TRHs (NEPC 2013)	>C10-C16 Fraction	mg/l	0.05	<0.05		
•	>C16-C34 Fraction	mg/l	0.1	<0.1		
	>C34-C40 Fraction	mg/l	0.1	<0.1		
	>C10-C16 less Naphthalene (F2)	mg/l	0.05	< 0.05		
	C6-C10 Fraction	mg/l	0.01	< 0.02		
	C6-C10 less BTEX (F1)	mg/l	0.01	< 0.02		

<u>Contents</u> Laboratory Control Samples, Error > 30%

SDG	Matrix_Type	SampleCode	Method_Name
544088	WATER	LCS_12_544088	E008 Speciated Phenols
544088	WATER	LCS_12_544088	USEPA 8270 Semivolatile Organics
544088	WATER	LCS_12_544088	E008 Speciated Phenols
544088	WATER	LCS_12_544088	E008 Speciated Phenols
544088	WATER	LCS_12_544088	E008 Speciated Phenols
544088	WATER	LCS_12_544088	E017 Semivolatile Organic Compounds
544088	WATER	LCS_12_544088	E008 Speciated Phenols
544088	WATER	LCS_12_544088	E008 Speciated Phenols
544088	WATER	LCS_12_544088	NA
544088	WATER	LCS_13_544088	NA
544088	WATER	LCS_13_544088	USEPA 8270 Semivolatile Organics
544088	WATER	LCS_13_544088	NA
546369	WATER	LCS_1_546369	NA
546369	WATER	LCS_1_546369	E008 Speciated Phenols
546369	WATER	LCS_1_546369	E008 Speciated Phenols
546369	WATER	LCS_1_546369	E008 Speciated Phenols
546369	WATER	LCS_1_546369	E008 Speciated Phenols
546369	WATER	LCS_1_546369	E008 Speciated Phenols
546369	WATER	LCS_1_546369	E008 Speciated Phenols
546369	WATER	LCS_1_546369	E008 Speciated Phenols
546369	WATER	LCS_1_546369	NA
546369	WATER	LCS_2_546369	NA
ENVIRO	LWATER	W167217LCS-W1	Org-012 - PAHs in waters and soil

OriginalChemName	Recovery %	Unit	Result_Type	LCL	UCL	Lab_Comments
2-Nitrophenol	62	%	REG			
2.4-Dinitrophenol	32	%	REG			
2.4.5-Trichlorophenol	51	%	REG			
2.4.6-Trichlorophenol	50	%	REG			
4-Chloro-3-methylphenol	47	%	REG			
4-Nitrophenol	32	%	REG			
Pentachlorophenol	46	%	REG			
Phenol	35	%	REG			
Tetrachlorophenols - Total	48	%	REG			
2-Cyclohexyl-4.6-dinitrophe	n:50	%	REG			
2-Methyl-4.6-dinitrophenol	31	%	REG			
Dinoseb	54	%	REG			
2-Cyclohexyl-4.6-dinitrophe	n:32	%	REG			
2-Methylphenol (o-Cresol)	66	%	REG			
2-Nitrophenol	43	%	REG			
2.4.5-Trichlorophenol	39	%	REG			
2.4.6-Trichlorophenol	37	%	REG			
3&4-Methylphenol (m&p-Cr	e: 52	%	REG			
4-Chloro-3-methylphenol	35	%	REG			
Pentachlorophenol	38	%	REG			
Tetrachlorophenols - Total	33	%	REG			
Dinoseb .	38	%	REG			
Phenanthrene	131	%	REG			

Contents Matrix Spike Recoveries less than 70% or greater than 130% or outside lab LCL or UCL

SDG	Lab_Report_Number	Matrix_Type	SampleCode	Field_ID	Depth	Sampled_Date-Time	Method_Name	Compound	Recovery %	Result_Type	LCL	UCL
544088	544088	SOIL	NCP_Ma29656_544088-SPK			28-04-1	7 E007 Polyaromatic Hydrocarbons (PAH)	Benzo(b&j)fluoranthene	65	SC		
544088	544088	WATER	NCP_Ap23147_544088-SPK			28-04-1	7 E008 Speciated Phenols	2-Methylphenol (o-Cresol)	64	SC		
544088	544088	WATER	NCP_Ap23147_544088-SPK			28-04-1	7 E008 Speciated Phenols	2-Nitrophenol	40	SC		
544088	544088	WATER	NCP_Ap23147_544088-SPK			28-04-1	7 E008 Speciated Phenols	2.4-Dichlorophenol	69	SC		
544088	544088	WATER	NCP_Ap23147_544088-SPK			28-04-1	7 E017 Semivolatile Organic Compounds (SVC	2.6-Dichlorophenol	53	SC		
544088	544088	WATER	NCP_Ap23147_544088-SPK			28-04-1	7 E008 Speciated Phenols	3&4-Methylphenol (m&p-Cres	s 56	SC		
544088	544088	WATER	NCP_Ap23147_544088-SPK			28-04-1	7 E008 Speciated Phenols	4-Chloro-3-methylphenol	32	SC		

Lab_Comments

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Field Dupli	cates (SOIL	_)	SDG	544088	544088		544088	ENVIROLAB 2017-05-01T00:00:00	$\overline{}$
Filter: ALL	•	,	Field ID	BH04 0.4-0.5		RPD		QC1	RPD
			Sampled Date/Time	28-04-17	28-04-17		28-04-17	28-04-17	
			oumprou z uto, t imo						
Chem Gro	ChemNam	Units	EQL						
			2 (Primary): 4 (Interlab)	5.7	4.0	35	5.7	6.0	5
	Cadmium			<0.4	<0.4	0	<0.4	<0.4	0
			5 (Primary): 1 (Interlab)	19.0	16.0	17	19.0	21.0	10
			5 (Primary): 1 (Interlab)	28.0	30.0	7	28.0	24.0	15
	Lead		5 (Primary): 1 (Interlab)	13.0	12.0	8	13.0	12.0	8
	Mercury (Ir			<0.1	<0.1	0	<0.1	<0.1	0
			5 (Primary): 1 (Interlab)	36.0	31.0	15	36.0	25.0	36
	Zinc		5 (Primary): 1 (Interlab)	39.0	35.0	11	39.0	32.0	20
etalloids									
TPHs (NEI	C6-C9 Fra	mg/kg	20 (Primary): 25 (Interla	<20.0	<20.0	0	<20.0	<25.0	0
,			20 (Primary): 50 (Interla	<20.0	<20.0	0	<20.0	<50.0	0
	C15-C28 F	mg/kg	50 (Primary): 100 (Interla	<50.0	<50.0	0	<50.0	<100.0	0
	C29-C36 F	mg/kg	50 (Primary): 100 (Interla	<50.0	<50.0	0	<50.0	<100.0	0
	C10-C36 F	mg/kg	50	<50.0	<50.0	0	<50.0		
°C 1999)									
TRHs (NE	>C10-C16	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0
	>C16-C34	mg/kg	100	<100.0	<100.0	0	<100.0	<100.0	0
	>C34-C40	mg/kg	100	<100.0	<100.0	0	<100.0	<100.0	0
	>C10-C16	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0
	C6-C10 Fr	mg/kg	20 (Primary): 25 (Interla	<20.0	<20.0	0	<20.0	<25.0	0
	C6-C10 les	mg/kg	20 (Primary): 25 (Interla	<20.0	<20.0	0	<20.0	<25.0	0
² C 2013)									
BTEX	Benzene	mg/kg	0.1 (Primary): 0.2 (Interl	<0.1	<0.1	0	<0.1	<0.2	0
	Ethylbenze	mg/kg	0.1 (Primary): 1 (Interlate	<0.1	<0.1	0	<0.1	<1.0	0
	Toluene	mg/kg	0.1 (Primary): 0.5 (Interl	<0.1	<0.1	0	<0.1	<0.5	0
	Xylene (o)	mg/kg	0.1 (Primary): 1 (Interlate	<0.1	<0.1	0	<0.1	<1.0	0
	Xylene (m	mg/kg	0.2 (Primary): 2 (Interlate	<0.2	<0.2	0	<0.2	<2.0	0
	Xylene (To	mg/kg	0.3 (Primary): 1 (Interlat	<0.3	<0.3	0	<0.3	<1.0	0
Polycyclic .	Naphthaler	mg/kg	0.5 (Primary): 1 (Interlate	<0.5			<0.5	<1.0	0
			0.5 (Primary): 1 (Interlate		<0.5	0	<0.5	<1.0	0
\romatic Hy	drocarbons	3							
Other	% Moisture	%	1	18.0	15.0	18	18.0		
*RPDs hav	e only beer	consid	lered where a concentration	on is greater than	1 times the FQI	· ·	•		

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

^{**}High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 50 (1-20 x EQL); 30 (20-30 x EQL); 30 (> 30 x EQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in th

Field Dunli		-D\	SDG	E40000	F 40000		E40000	ENVIROUAD 2047 OF 46T00-00-00	
Filter: ALL	cates (WATI	=R)	Field ID	546369 MW01-01	546369 QA1	RPD	546369 MW01-01	ENVIROLAB 2017-05-16T00:00:00 QC1	RPD
T III.OT. ALL			Sampled Date/Time	16-05-17	16-05-17	5	16-05-17	16-05-17	11. 5
	ChemNam		EQL	0.04	0.000		2.24	0.005	
Metals & M	Arsenic (To Cadmium (0.001 0.0002 (Primary): 0.0001	<0.01 <0.002	0.002 <0.0002	0	<0.01 <0.002	0.005 <0.0001	0
	Chromium		0.0002 (Pfilitary). 0.000 f	<0.002	<0.0002	0	<0.002	<0.0001 <0.001	0
	Copper (Fil		0.001	<0.01	<0.001	0	<0.01	<0.001	0
	Lead (Filter		0.001	0.01	<0.001	164	0.01	<0.001	164
	Mercury (In		0.0001 (Primary): 0.0000	0.0008	<0.0001	156	0.0008	<0.0001	176
	Nickel (Filte		0.001	<0.05	0.007	0	<0.05	0.005	0
etalloids	Zinc (Filtere	mg/l	0.005 (Primary): 0.001 (I	<0.05	<0.005	0	<0.05	0.002	0
	C6-C9 Frac	ma/l	0.02 (Primary): 0.01 (Inte	<0.02	<0.02	0	<0.02	<0.01	0
11 113 (1421	C10-C14 F		0.05	<0.05	<0.05	0	<0.05	<0.05	0
	C15-C28 F		0.1	<0.1	0.2	67	<0.1	<0.1	0
	C29-C36 F		0.1	<0.1	0.2	67	<0.1	<0.1	0
	C10-C36 F	mg/l	0.1	<0.1	0.4	120	<0.1		
C 1999)	. C40 C4C	or /I	0.05	-0.05	-0.05	0	-0.05	.0.05	
TRHS (NEF	>C10-C16 >C16-C34		0.05 0.1	<0.05 <0.1	<0.05 0.5	0 133	<0.05 <0.1	<0.05 <0.1	0
	>C10-C34 >C34-C40		0.1	<0.1	<0.1	0	<0.1	<0.1	0
	>C10-C16		0.05	<0.05	<0.05	0	<0.05	<0.05	0
	C6-C10 Fra		0.02 (Primary): 0.01 (Inte	<0.02	<0.02	0	<0.02	<0.01	0
	C6-C10 les	mg/l	0.02 (Primary): 0.01 (Inte	<0.02	<0.02	0	<0.02	<0.01	0
°C 2013)	<u> </u>	//	0.004	0.004	0.004		0.004	0.004	
BTEX	Benzene Ethylbenze	mg/l	0.001 0.001	<0.001 <0.001	<0.001	0	<0.001 <0.001	<0.001 <0.001	0
		mg/l	0.001	<0.001	<0.001	0	<0.001	<0.001	0
	Xylene (o)		0.001	<0.001	<0.001	0	<0.001	<0.001	0
	Xylene (m		0.002	<0.002	<0.002	0	<0.002	<0.002	0
	Xylene (Tot	mg/l	0.003	<0.003	<0.003	0	<0.003		
Polycyclic A	Acenaphth		0.001	<0.001	<0.001	0	<0.001	<0.001	0
	Acenaphthy Anthracene		0.001 0.001	<0.001 <0.001	<0.001	0	<0.001 <0.001	<0.001 <0.001	0
	Benz(a)ant		0.001	<0.001	<0.001	0	<0.001	<0.001	0
	Benzo(a)py		0.001	<0.001	<0.001	0	<0.001	<0.001	0
	Benzo(b,j)f		0.001	<0.001	<0.001	0	<0.001		
	Benzo(g,h,		0.001	<0.001	<0.001	0	<0.001	<0.001	0
	Benzo(k)flu		0.001	<0.001	<0.001	0	<0.001	0.004	
	Chrysene Dibenz(a,h		0.001 0.001	<0.001 <0.001	<0.001 <0.001	0	<0.001 <0.001	<0.001 <0.001	0
	Fluoranthe		0.001	<0.001	<0.001	0	<0.001	<0.001	0
		mg/l	0.001	<0.001	<0.001	0	<0.001	<0.001	0
	Indeno(1,2		0.001	<0.001	<0.001	0	<0.001	<0.001	0
	Naphthaler		0.01 (Primary): 0.001 (In	<0.01	<0.01	0	<0.01	<0.001	0
	Naphthaler		0.001	<0.001	<0.001	0	<0.001	<0.001	0
	Phenanthre		0.001 0.001	<0.001	<0.001 <0.001	0	<0.001 <0.001	<0.001 <0.001	0
	Pyrene PAHs (Tota	mg/l	0.001	<0.001 <0.001	<0.001	0	<0.001	<0.001	U
Aromatic Hy	•	1119/1	0.001	VO.001	VO.001		V0.001		
	2,4,5-trichle	mg/l	0.001	<0.001	<0.001	0	<0.001		
	2,4,6-trichlo		0.01	<0.01	<0.01	0	<0.01		
	2,4-dichlor		0.001	<0.001	<0.001	0	<0.001		
	2,4-dimethy		0.001	<0.001	<0.001	0	<0.001		
<u> </u>	2,4-dinitrop 2,6-dichlor		0.001 0.003	<0.001 <0.003	<0.001	0	<0.001 <0.003		\vdash
	2-chlorophe		0.003	<0.003	<0.003	0	<0.003		\vdash
	2-Methylph		0.003	<0.003	<0.003	0	<0.003		
	2-nitropher	mg/l	0.005	<0.005	<0.005	0	<0.005		
	3- & 4-Meth		0.006	<0.006	<0.006	0	<0.006		
	4,6-Dinitro-		0.005	<0.005	<0.005	0	<0.005		
	4,6-Dinitro- 4-Chloro-3-		0.1 0.01	<0.1 <0.01	<0.1 <0.01	0	<0.1 <0.01		
	4-chloro-3- 4-nitropher		0.001	<0.01	<0.01	0	<0.01		
		mg/l	0.003	<0.001	<0.001	0	<0.001		
	Total Halog		0.01	<0.01	<0.01	0	<0.01		
	Total Non-l	mg/l	0.1	<0.1	<0.1	0	<0.1		
	Total Tetra	mg/l	0.03	<0.03	<0.03	0	<0.03		
0	Dontack	no ~ /I	0.04	.0.04	.0.04		.0.04		
organochic	Pentachlor	mg/l	0.01	<0.01	<0.01	0	<0.01		\vdash
Herbicides		mg/l	0.1	<0.1	<0.1	0	<0.1		
			ered where a concentration						

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 50 (1-20 x EQL); 30 (20-30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those

Contents

Laboratory Control Samples, Error > 30%

SDG	Matrix_Type	SampleCode	Method_Name	OriginalChemName	Recovery %	Unit	Result_Type	LCL	UCL	Lab_Comments
544088	WATER	LCS_12_544088	E008 Speciated Phenols	2-Nitrophenol	62	%	REG			
544088	WATER	LCS_12_544088	USEPA 8270 Semivolatile Organics	2.4-Dinitrophenol	32	%	REG			
544088	WATER	LCS_12_544088	E008 Speciated Phenols	2.4.5-Trichlorophenol	51	%	REG			
544088	WATER	LCS_12_544088	E008 Speciated Phenols	2.4.6-Trichlorophenol	50	%	REG			
544088	WATER	LCS_12_544088	E008 Speciated Phenols	4-Chloro-3-methylphenol	47	%	REG			
544088	WATER	LCS_12_544088	E017 Semivolatile Organic Compounds	s 4-Nitrophenol	32	%	REG			
544088	WATER	LCS_12_544088	E008 Speciated Phenols	Pentachlorophenol	46	%	REG			
544088	WATER	LCS_12_544088	E008 Speciated Phenols	Phenol	35	%	REG			
544088	WATER	LCS_12_544088	NA .	Tetrachlorophenols - Total	48	%	REG			
544088	WATER	LCS_13_544088	NA	2-Cyclohexyl-4.6-dinitrophen	50	%	REG			
544088	WATER	LCS_13_544088	USEPA 8270 Semivolatile Organics	2-Methyl-4.6-dinitrophenol	31	%	REG			
544088	WATER	LCS_13_544088	NA	Dinoseb	54	%	REG			
546369	WATER	LCS_1_546369	NA	2-Cyclohexyl-4.6-dinitrophen	(32	%	REG			
546369	WATER	LCS_1_546369	E008 Speciated Phenols	2-Methylphenol (o-Cresol)	66	%	REG			
546369	WATER	LCS_1_546369	E008 Speciated Phenols	2-Nitrophenol	43	%	REG			
546369	WATER	LCS_1_546369	E008 Speciated Phenols	2.4.5-Trichlorophenol	39	%	REG			
546369	WATER	LCS_1_546369	E008 Speciated Phenols	2.4.6-Trichlorophenol	37	%	REG			
546369	WATER	LCS_1_546369	E008 Speciated Phenols	3&4-Methylphenol (m&p-Cre	:52	%	REG			
546369	WATER	LCS_1_546369	E008 Speciated Phenols	4-Chloro-3-methylphenol	35	%	REG			
546369	WATER	LCS_1_546369	E008 Speciated Phenols	Pentachlorophenol	38	%	REG			
546369	WATER	LCS_1_546369	NA	Tetrachlorophenols - Total	33	%	REG			
546369	WATER	LCS_2_546369	NA	Dinoseb	38	%	REG			
ENVIRO I	LWATER	W167217LCS-W1	Org-012 - PAHs in waters and soil	Phenanthrene	131	%	REG			

Contents

Trip Spike Recoveries (70% - 130% is acceptable)

SDG	Lab_Report_Number	Matrix_Type	SampleCode	Field_ID	Method_Name
544088	544088	WATER	S17-Ap23246	TS20170428	TRH C6-C40 - LTM-ORG-2010
544088	544088	WATER	S17-Ap23246	TS20170428	TRH C6-C40 - LTM-ORG-2010
544088	544088	WATER	S17-Ap23246	TS20170428	TRH C6-C40 - LTM-ORG-2010
544088	544088	WATER	S17-Ap23246	TS20170428	TRH C6-C40 - LTM-ORG-2010
544088	544088	WATER	S17-Ap23246	TS20170428	TRH C6-C40 - LTM-ORG-2010
544088	544088	WATER	S17-Ap23246	TS20170428	TRH C6-C40 - LTM-ORG-2010
546369	546369	WATER	S17-My15749	TS20170516	TRH C6-C40 - LTM-ORG-2010
546369	546369	WATER	S17-My15749	TS20170516	TRH C6-C40 - LTM-ORG-2010
546369	546369	WATER	S17-My15749	TS20170516	TRH C6-C40 - LTM-ORG-2010
546369	546369	WATER	S17-My15749	TS20170516	TRH C6-C40 - LTM-ORG-2010
546369	546369	WATER	S17-My15749	TS20170516	TRH C6-C40 - LTM-ORG-2010
546369	546369	WATER	S17-My15749	TS20170516	TRH C6-C40 - LTM-ORG-2010

<u>Contents</u> Surrogate Variation > 30% or outside lab LCL or UCL

SDG	Expr1001	Lab_Report_Number	Sample_Type	Matrix_Type	SampleCode	Field_ID	Depth	Sampled_Date-Time	Compound	Recovery %	Unit	LCL	UCL	_
548234	548234	548234	Normal	SOIL	S17-My28379	BH06_0.2-0.3	0.2 - 0.3	28-04-1	7 4-Bromofluorobenzene (surr.)	60	%	7	0	130
544088	544088	544088	Normal	SOIL	S17-Ap23237	BH04_0.4-0.5	0.4 - 0.5	28-04-1	7 4-Bromofluorobenzene (surr.)	68	%	7	0	130
544088	544088	544088	Normal	SOIL	S17-Ap23237	BH04_0.4-0.5	0.4 - 0.5	28-04-1	7 Dibutylchlorendate (surr.)	52	%	7	0	130
544088	544088	544088	Normal	SOIL	S17-Ap23237	BH04_0.4-0.5	0.4 - 0.5	28-04-1	7 Phenol-d6 (surr.)	66	%	2	20	130
544088	544088	544088	Normal	SOIL	S17-Ap23241	BH09_0.4-0.5	0.4 - 0.5	28-04-1	7 4-Bromofluorobenzene (surr.)	62	%	7	0	130
544088	544088	544088	Normal	SOIL	S17-Ap23241	BH09_0.4-0.5	0.4 - 0.5	28-04-1	7 Dibutylchlorendate (surr.)	58	%	7	0	130
544088	544088	544088	Normal	SOIL	S17-Ap23242	BH10_0.0-0.1	0 - 0.1	28-04-1	7 Dibutylchlorendate (surr.)	56	%	7	0	130
544088	544088	544088	Normal	SOIL	S17-Ap23242	BH10_0.0-0.1	0 - 0.1	28-04-1	7 4-Bromofluorobenzene (surr.)	68	%	7	0	130
544088	544088	544088	Rinsate	WATER	S17-Ap23244	RB20170428		28-04-1	7 2-Fluorobiphenyl (surr.)	51	%	3	80	130
544088	544088	544088	Rinsate	WATER	S17-Ap23244	RB20170428		28-04-1	7 Tetrachloro-m-xylene (surr.)	1	%	7	0	130
546369	546369	546369	Normal	WATER	S17-My15744	MW01-01	MW01-01	16-05-1	7 p-Terphenyl-d14 (surr.)	64	%	3	80	130
546369	546369	546369	Normal	WATER	S17-My15745	MW02-01	MW02-01	16-05-1	7 2-Fluorobiphenyl (surr.)	57	%	3	80	130
546369	546369	546369	Normal	WATER	S17-My15746	MW03-01	MW03-01	16-05-1	7 p-Terphenyl-d14 (surr.)	65	%	3	80	130
546369	546369	546369	Normal	WATER	S17-My15747	MW04-01	MW04-01	16-05-1	7 p-Terphenyl-d14 (surr.)	69	%	3	80	130
546369	546369	546369	Field_D	WATER	S17-My15754	QA1	MW01-01	16-05-1	7 2-Fluorobiphenyl (surr.)	51	%	3	80	130
546369	546369	546369	Field_D	WATER	S17-My15754	QA1	MW01-01	16-05-1	7 p-Terphenyl-d14 (surr.)	53	%	3	80	130

Compound	Trip_Spike_Result	Trip_Spike_Control	Result_Units	Spike_Recovery_%	Acceptable	Result_Type
Benzene	NA	NA	NA	95	Υ	REG
Ethylbenzene	NA	NA	NA	87	Υ	REG
m&p-Xylenes	NA	NA	NA	90	Υ	REG
o-Xylene	NA	NA	NA	87	Υ	REG
Toluene	NA	NA	NA	88	Υ	REG
Xylenes - Total	NA	NA	NA	89	Υ	REG
Benzene	NA	NA	NA	102	Υ	REG
Ethylbenzene	NA	NA	NA	83	Υ	REG
m&p-Xylenes	NA	NA	NA	90	Υ	REG
o-Xylene	NA	NA	NA	95	Υ	REG
Toluene	NA	NA	NA	88	Υ	REG
Xylenes - Total	NA	NA	NA	92	Υ	REG

JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited

Document Distribution

Rev No.	Copies	Recipient	Date:	
0	1 x Electronic Copy	Nicholas Tao	05/06/2017	
1	1 x Electronic Copy	Nicholas Tao	28/06/2017	

Document Status

Rev No.	Author	Reviewer	Approved for Issue					
Rev No.	Author	Name	Name	Signature	Date			
0	Nicola Wells	Seth Molinari	Seth Molinari	Sett M	05/06/2017			
1	Nicola Wells	Seth Molinari	Seth Molinari	Sett M	28/06/2017			